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Dynamicmeshadaptionon unstructured grids is a powerful tool for com-

puting large-scale problems that require grid modifications to efficiently resolve so-

lution features. Unfortunately, an efficient parallel implementation is difficult to

achieve, primarily due to the load imbalance created by the dynamically-changing

nonuniform grid. To address this problem, we have developed PLUM, an automatic

portable framework for performing adaptive large-scale numerical computations in

a message-passing environment.

First, we present an efficient parallel implementation of a tetrahedral mesh

adaption scheme. Extremely promising parallel performance is achieved for various

refinement and coarsening strategies on a realistic-sized domain. Next we describe

PLUM, a novel method for dynamically balancing the processor workloads in adap-

tive grid computations. This research includes interfacing the parallel mesh adaption

procedure based on actual flow solutions to a data remapping module, and incor-

porating an efficient parallel mesh repartitioner. A significant runtime improvement

is achieved by observing that data movement for a refinement step should be per-

formed after the edge-marking phase but before the actual subdivision. We also

present optimal and heuristic remapping cost metrics that can accurately predict

the total overhead for data redistribution.

Several experiments are performed to verify the effectiveness of PLUM on

sequences of dynamically adapted unstructured grids. Portability is demonstrated

by presenting results on the two vastly different architectures of the SP2 and the Ori-

gin2000. Additionally, we evaluate the performance of five state-of-the-art partition-

ing algorithms that can be used within PLUM. It is shown that for certain classes of

unsteady adaption, globally repartitioning the computational mesh produces higher
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quality results than diffusive repartitioning schemes. We also demonstrate that a

coarse starting mesh produces high quality load balancing, at a fraction of the cost

required for a fine initial mesh. Results indicate that our parallel load balancing

strategy will remain viable on large numbers of processors.



ACKNOWLEGEMENTS

First, I wouldliketo expressmydeepestgratitudeto RupakBiswaswithout

whomthis thesiswouldneverhavebeenpossible.I wastruly fortunateto havesuch

a knowledgeableand generousmentor. Regardlessof his busyschedulehealways

found time to help meon my thesis. I especiallywould like to thank him for his

patience,encouragement,andmostimportantlyhis friendship.

I want to thank Oliver McBryan,CharbelFarhat, Xiao-ChuanCai, and

RichardByrd for servingonmy committee.

I amdeeplyindebtedto RogerStrawn.Our collaborationon theprediction

andanalysisof helicopternoise,providedthe startinggroundfrom whichmy thesis

wasbuilt.

I wasfortunate for the opportunity to work with Robert Schreiber.His

wisdomandenthusiasmarean inspiration. Oneof hismanycontributionswas the

developmentof a theoreticalframeworkfor addressingthe reassignmentproblem.

I wouldalsolike to thank Hal Gabowfor taking the time to sharehis algorithmic

insightswith me.

I want to thank Andrew Sohnand Horst Simonfor their collaboration.

Their workgreatlycontributedto manyof the ideaspresentedin this thesis.I also

sincerelythank Vipin Kumar and GeorgeKarypis for their help with the MeTiS

partitioners,andChrisWalshawfor hishelpwith theJostlepartitioners.

My heartfeltgratitudegoesto my parentsfor their dedicationandlove. I

wasincrediblylucky to havetheir constantsupportandencouragement.I owemuch

to Arin Fishkinfor herlove,proofreadingskills,andyummyrisotto. Hercompanion-

shipmademy researcheffortsmoreenjoyableandproductive.Additionally, I thank



vi

Tim Barkowfor hiseditingskillsandyearsof easyliving. I alsowantthankmy dear

friendsLarry Smith, TedRheingold,Alex Hart, SamBoonin,and Eric Heckerfor

providingmewith necessarydistractionsduringmy thesiswork.

Finally,I wouldlike to thank Joe Oliger for his gracious support and rock

climbing beta. This work has been supported by NASA via Contract NAS 2-96027

between NASA and the Universities Space Research Association (USRA). This work

was performed at the Research Institute for Advanced Computer Science (RIACS),

NASA Ames Research Center, Moffett Field, CA.



CONTENTS

CItAPTER

1 INTRODUCTION............................. 1

1.1 ThesisObjective........................... 1

1.2 HistoricalReview .......................... 4

1.2.1 CombinatorialMethods...................... 4

1.2.2 Local Diffusive Methods ..................... 6

1.2.3 General Global Methods ..................... 9

1.2.4 Repartitioning Methods ..................... 11

1.3 Thesis Outline ............................ 16

2 PARALLEL TETRAtlEDRAL MESH ADAPTION .......... 18

2.1 Serial Mesh Adaption Overview .................. 20

2.2 Distributed-Memory Implementation ............... 23

2.2.1 Initialization ............................ 24

2.2.2 Execution ............................. 26

2.2.3 Finalization ............................ 29

2.3 Euler Flow Solver .......................... 31

2.4 Experimental Results ........................ 32

2.4.1 Refinement Phase ......................... 34

2.4.2 Coarsening Phase ......................... 38

2.4.3 Initialization and Finalization Phases .............. 39

3 DYNAMIC LOAD BALANCING .................... 41

3.1 Dual Graph of Initial Mesh ..................... 42

3.2 Preliminary Evaluation ....................... 43



°°°
Vnl

3.3

3.4

3.5

3.5.1

3.5.2

3.5.3

3.5.4

3.6

3.7

3.8

Parallel Mesh Repartitioning ....................

Similarity Matrix Construction ...................

Processor Reassignment .......................

TotalV metric ...........................

MaxV metric ...........................

MaxSR metric ...........................

Heuristic Algorithm ........................

Cost Calculation ...........................

Data Remapping ..........................

Experimental results ........................

4 PORTABILITY AND REPARTITIONING ANALYSIS ........

4.1 Helicopter rotor test case ......................

4.1.1 PLUM on the Origin2000 ....................

4.1.2 The redistribution cost model on the Origin2000 ........

4.2 Unsteady simulation test case ...................

4.2.1 Comparison of partitioners ....................

4.2.2 SP2 vs. Origin2000 ........................

4.2.3 Coarse vs. fine initial mesh ....................

4.2.4 Growing vs. stable mesh .....................

5 SUMMARY AND FUTURE WORK ..................

5.1 Summary ...............................

5.2 Future Work .............................

44

45

46

46

48

50

52

54

58

59

73

73

74

77

79

82

86

87

91

94

94

99

BIBLIOGRAPHY ................................. 102



ix

TABLES

TABLE

2.1 Progression of Grid Sizes through Refinement and Coarsening for

the Different Strategies ......................... 33

2.2 Performance of Mesh Refinement when Edges are Bisected Randomly 34

2.3 Performance of Mesh Refinement when Edges are Bisected based

on Flow Solution ............................ 35

2.4 Performance of "Load-Balanced" Mesh Refinement when Edges are

Bisected based on Flow Solution .................... 36

2.5 Quality of Load Balance Before and After Mesh Refinement .... 37

2.6 Performance of Mesh Coarsening ................... 38

2.7 Performance of Initialization and Finalization Steps for REAL_IR

Strategy ................................. 39

3.1 Grid sizes for the three different refinement strategies ........ 59

3.2 Comparison of five processor reassignment algorithms for the Real_2R

case on the SP2 with F = 1....................... 63

3.3 Progression of Grid Size through a Sequence of Three Levels of

Adaption ................................. 67

4.1 Execution time of 3D_TAG on the SP2 and the Origin2000 when

data is remapped before mesh refinement ............... 76

4.2 Remapping time within PLUM on the SP2 and the Origin2000 when

data is redistributed before mesh refinement ............. 79

4.3 Partitioning time oil the SP2 for P=64 using a variety of partition-

ers for Sequence_l ............................ 83



X

4.4 Load imbalance factor before and after mesh partitioning for P=64

using a variety of partitioners for Sequence_l ............. 84

4.5 Percentage of cut edges before and after mesh partitioning for P=64

using a variety of partitioners for Sequence_l ............. 85

4.6 Remapping time on an SP2 for P=64 using the default and our

heuristic strategies for Sequence_l ................... 86

4.7 Partitioning and remapping times on the SP2 and the Origin2000

for P=32 using PMeTiS and DAMeTiS for Sequence_l ....... 87

4.8 Load imbalance factor and percentage of cut edges before and af-

ter mesh partitioning for P=32 using PMeTiS and DAMeTiS for

Sequence_l ................................ 88

4.9 Partitioning and remapping times on an SP2 for P=32 using PMeTiS

and DAMeTiS for Sequence_3 ..................... 92

4.10 Load imbalance factor and percentage of cut edges before and af-

ter mesh partitioning for P=32 using PMeTiS and DAMeTiS for

Sequence_3 ................................ 93



xi

FIGURES

FIGURE

1.1 Overviewof PLUM, our frameworkfor paralleladaptivenumerical

computation................................ 2

2.1 Threetypesof subdivisionarepermittedfor a tetrahedralelement. 21

2.2 Sampleedge-markingpatternfor elementsubdivision......... 22

2.3 An exampleshowingthecommunicationneedto form the SPLfor

a sharedvertex.............................. 25

2.4 An exampleshowinghowboundaryfacesarerepresentedat parti-

tion boundaries.............................. 26

2.5 A two-dimensionalexampleshowingcommunicationduringprop-

agationof the edgemarkingphase................... 27

2.6 An exampleshowinghowa newedgeacrossa faceis classifiedas

sharedor internal............................. 29

2.7 Cut-out viewof the initial tetrahedralmesh.............. 32

3.1 An exampleof a similarity matrix M for P = 4 and F = 2. Only

the non-zero entries are shown ..................... 45

3.2 Various cost metrics of a similarity matrix M for P = 4 and F = 1

using (a) optimal MWBG algorithm, (b) optimal BMCM algo-

rithm, (c) optimal DBMCM algorithm, and (d) our heuristic al-

gorithm .................................. 49

3.3 Pseudocode for our heuristic algorithm for solving the processor

reassignment problem .......................... 53



xii

3.10

3.11

3.4 Speedup of the 3D_TAG parallel mesh adaption code when data is

remapped either after or before mesh refinement ........... 60

3.5 Remapping times within P LU M when data is remapped either after

or before mesh refinement ........................ 61

3.6 Comparison of the optimal and heuristic MWBG remappers in

terms of the execution time (top) and the volume of data movement

(bottom) for the REAI,_2R strategy ................... 62

3.7 Anatomy of execution times for the REAL_IR, REAL_2R, and REAL_3R

refinement strategies ........................... 66

3.8 Maximum (top) and actual (bottom) impact of load balancing on

flow solver execution times for different mesh growth factors G. . . 68

3.9 Final adapted mesh and computed pressure contours in the plane

of the helicopter rotor .......................... 09

Anatomy of execution times for the three levels of adaption ..... 70

Remapping time as a function of the rotalV (top) and the MaxSR

(bottom) metrics ............................. 72

4.1 Speedup of 3D_TAG the Origin2000 when data is remapped either

after or before mesh refinement ..................... 75

4.2 Remapping time within PLUM on the the Origin2000 when data is

redistributed either after or before mesh refinement .......... 77

4.3 Anatomy of execution times for the Real_lR, Real_2R, and Real_3R

refinement strategies on the Origin2000 ................ 78

4.4 Remapping time as a function of TotalV and MaxSR on the Ori-

gin2000 .................................. 80

4.5 Initial and adapted meshes (after levels 1 and 5) for the simulated

unsteady experiment ........................... 81



xiii

4.6 Progression of grid sizes through nine levels of adaption for the

unsteady simulation ........................... 82

4.7 PMeTiS partitioning and remapping times using the heuristic strat-

egy for P=16 and 64 on an SP2 for Sequence_l and Sequence_2. . . 89

4.8 Load imbalance factor and percentage of cut edges after mesh par-

titioning using PMeTiS for P=16 and 64 for Sequence_l and Se-

quence_2. Note that the imbalance factor curves for the two se-

quences are overlaid ........................... 90



CHAPTER1

INTRODUCTION

Dynamic mesh adaption on unstructured grids is a powerful tool for com-

puting large-scale problems that require grid modifications to effi£iently resolve so-

lution features. By locally refining and coarsening the mesh to capture physical phe-

nomena of interest, such procedures make standard computational methods more

cost effective. Unfortunately, an efficient parallel implementation of these adaptive

methods is rather difficult to achieve, primarily due to the load imbalance created

by the dynamically-changing nonuniform grid. This requires significant commu-

nication at runtime, leading to idle processors and adversely affecting the total

execution time. Nonetheless, it is generally thought that unstructured adaptive-

grid techniques will constitute a significant fraction of future high-performance su-

percomputing. Various dynamic load balancing methods have been reported to

date [17, 18, 20, 21, 22, 37, 42, 67, 70]; however, most of them either lack a global

view of loads across processors or do not apply their techniques to realistic large-scale

applications.

1.1 Thesis Objective

The purpose of this research effort is to efficiently simulate steady and

unsteady aerodynamic flows around realistic engineering-type geometries on multi-

processor systems. The computational cost and memory requirements of large-scale

fluid dynamic simulations is prohibitive on classical scalar computers, while vector

computers do not seem to keep up with the demands of todays CFD applications [15].

Our thesis objective is to build a portable system for efficiently performing adaptive
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Figure 1.1. Overview of PLUM, our framework for parallel adaptive numerical com-

putation.

large-scale flow calculations in a parallel message-passing environment. Figure 1.1

depicts our framework, called PLUM, for such an automatic system. It consists of

a flow solver and a mesh adaptor, with a partitioner and a remapper that load bal-

ances and redistributes the computational mesh when necessary. Tile mesh is first

partitioned and mapped among the available processors. A flow solver then runs

for several iterations, updating solution variables. Once an acceptable solution is

obtained, a mesh adaption procedure is invoked. It first targets edges for coarsening

and refinement based on an error" indicator computed from the flow solution. The

old mesh is then coarsened, resulting in a smaller grid. Since edges have already

been marked for refinement, it is possible to exactly predict the new mesh before

actually performing the refinement step. Program control is thus passed to the load

balancer at this time. A quick evaluation step determines if the new mesh will be

so unbalanced as to warrant repartitioning. If the current partitions will remain ad-

equately load balanced, control is passed back to the subdivision phase of the mesh

adaptor. Otherwise, a repartitioning procedure is used to divide the new mesh into

subgrids. The new partitions are then reassigned to the processors in a way that
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minimizes the cost of data movement. If the remapping cost is less than the com-

putational gain that would be achieved with balanced partitions, all necessary data

is appropriately redistributed. Otherwise, the new partitioning is discarded. The

computational mesh is then actually refined and the flow calculation is restarted.

Notice from the framework in Fig. 1.1 that splitting the mesh refinement

step into two distinct phases of edge marking and mesh subdivision allows the sub-

division phase to operate in a more load balanced fashion. In addition, since data

remapping is performed before the mesh grows in size due to refinement, a smaller

volume of data is moved. This, in turn, leads to significant savings in the redis-

tribution cost. However, the primary task of the load balancer is to balance the

computational load for the flow solver while reducing the runtime communication.

This is important because flow solvers are usually several times more expensive than

mesh adaptors. In any case, it is obvious that mesh adaption, repartitioning, proces-

sor assignment, and remapping are critical components of the framework and must

be accomplished rapidly and efficiently so as not to cause a significant overhead to

the flow computation.
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1.2 Historical Review

Theintroductionof grid adaptionin aparallelenvironmentgenerally inval-

idates the initial decomposition, since the computational requirements have changed

nonuniformly on each processor. Therefore it is critical that the load be dynamically

rebalanced as part of the adaptive calculation procedure. The general problem of dy-

namic load balancing has been widely studied in the literature and many techniques

have been proposed for parallel systems. Their performance depends on several

factors in addition to the specific application. These include the interconnection

network, the number of processors, and the size of the problem. The abstract goal

of load balancing can be stated as follows [73]:

Given a collection of tasks comprising a computation and a set of processors on which

these tasks can be executed, find the mapping of tasks to processors that minimize

the runtime of the computation.

Various methods of dynamic load balancing have been reported to date,

however, most of them lack a global view of loads across processors. Some of these

techniques are not scalable, others have only.been implemented on toy problems,

many theoretical schemes are too complex to reasonably implement, and some meth-

ods fail to consider communication locality. A popular approach is to rely on local

migration methods where each nodes decisions are based only on local knowledge,

and loads are exchanged between neighboring processors. The following section ex-

amines some of the dynamic load balancing techniques ill the literature.

1.2.1 Combinatorial Methods

One way of performing dynamic load balancing is through general combi-

natorial techniques such as simulated annealing or genetic algorithms. Simulated

Annealing (SA) [46] is a popular heuristic method for finding suboptimal solutions



to combinatorialproblems.The techniqueis analogousto a methodin statistical

mechanicsdesignedto simulatethe physicalprocessof annealing. SA simulates

the slowcoolingof solidsas a way to approximatethe solutionsto combinatorial

problems.It worksby iterativelyproposingnewdistributionsandevaluatingtheir

quality. If the newsolutionis an improvementoverthepreviousiterationthat state

is accepted.Otherwisethe new solutionmaybechosenaccordingto a probability

whichdecreasesasthe temperaturecools.This processcontinuesuntil the solution

stateis frozenand no further improvementscanbemade.SA requiresthe userto

specifyseveralparametersincludingthestarting temperatureandcoolingschedule.

In general,findinga combinationof theseparametersto producea balancedwork

loadin a smallamountof time is difficult, becausetheseinputs maydiffer for each

problem.

GeneticAlgorithms(GA) [45]areamodelof machinelearningwhichderive

their behaviorfrom a metaphorbasedon the processesof natural evolution. It is

considereda generaland robust optimization method. Briefly, GA starts with an

initial population which is typically generated randomly and consists of a set of

individuals, or in our case a work load distribution. A set of generic operators

are used to generate new individuals from the current population using a process

called reproduction, consisting of crossovers and mutations. The basis of GA is that

individuals which contribute to the minimization of the object function are more

likely to reproduce. Once again, a large number of parameters must be set for a

successful distribution.

In general, stochastic optimization techniques on their own are not a popu-

lar approach for solving load balancing problems. They can be slow, trapped in local

minima, and their behavior depends on many parameters which must be carefully

tuned for each application. These methods, however, may be very useful in fine

tuning an existing load distribution.



Anothercombinatorialapproachis to useprobabilistictechniques.In Ran-

domSeeking[49],sourceprocessorsrandomlyseekout sinkprocessorsfor loadbal-

ancingbyflingingprobemessages.Theprobesnotonly locatesinks,but alsocollect

load distribution informationwhich is usedto efficientlyregulateload balancing

activities. This methodworkswell for certaintypesof problemssuchas parallel

best-firstbranchandboundalgorithms.

RandomMatching[31]is analgorithmbasedonsolvingthe abstractprob-

lemof IncrementalWeightMigrationonarbitrary graphs,whereedgemappingsare

randomlychosenbasedonly on local information. This is a simple,randomized

algorithmwhich]_rovablyresultsin asymptoticallyoptimal convergencetowarda

perfectbalance.In generaltheseprobabilistictechniquesarenot suitablefor bal-

ancingadaptivemeshcomputations.They requiretoo manyiterations,couldresult

in disjoint subdomains,ignoreedgeweights,and sendsmall messagesacrossthe

networkresultingin a highcumulativestart upcostoverhead.

1.2.2 Local Diffusive Methods

Diffusion is a well know algorithm for load balancing in which tasks model

the heat equation by moving from heavily loaded processors to lightly loaded neigh-

bors. A processor's neighbor may be defined by its hardware topology or the con-

nectivity of the distributed domain. Diffusion was first presented as a method for

load balancing in [20] and is defined as follows: For a system of P processors, let

wi(t) be the work load on processor i at time t. Adjust the workloads at time t + 1

as follows:

wi(t+ l)=wi(t)+ _ (wj(t)-wi(t))/2 (1.1)
jet(i)

where A/(i) is the set of all processors connected to processor i. This process can be

mapped onto the diffusion equation, and much is known about its properties. In par-

ticular, it can be shown that this process will eventually converge. The convergence
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time, r, however grows like r _ -_- which is rather high.

Kohring [42] presents a simple non-linear variant on the diffusion scheme

which considers strip decompositions of the domain. Each processor calculates its

own load, by measuring the elapsed CPU-time since the last load balancing step. If

a processor finds that one of its neighbors has needed more CPU-time than itself,

it transfers one complete row of link-cells to that neighbor. This algorithm shows

better convergence properties then the standard diffusion methods.

The basic diffusion algorithm is improved in [73] by using a second-order

unconditionally stable differencing scheme. This algorithm improves convergence by

allowing larger time steps to be taken without adding substantial complexity. The

task transfers are still limited to nearest neighbors in this approach.

Sender Initiated Diffusion (SID) [74] is a highly distributed asynchronous

local approach which makes use of nearest neighbor load information to apportion

surplus load from heavily loaded processors to underloaded neighbors. Here proces-

sors whose loads exceed a certain prespecified threshold, apportion the excess load

to deficient neighbors. Receiver Initiated Diffusion (RID) is the converse of the SID

strategy in that underloaded processors request loads from overloaded neighbors.

For most cases RID has been shown as being a superior approach to SID.

Cyclic Pairwise Exchange is an algorithm presented by Hammond [32] in

which processor pairs are defined by the hardware interconnections. Pairwise ex-

changes of tasks are then performed to iteratively improve an imbalanced load. This

method has been shown to improve the mapping time of SA by up to a factor of six.

Unfortunately this approach works best for SIMD architectures, and task movements

are performed one at a time.

Tiling is another approach to dynamic load balancing originally based on

the work of Leiss and Reddy [47]. This procedure is modified by Devine et al. [24]



to migratefiniteelementsbetweenprocessors.Each processor is considered a neigh-

borhood center, where a neighbor is defined as that processor and all processors

which share its subdomaln boundaries. Processors within a given neighborhood are

balanced with respect to each other using local performance measurements. Task

migration occurs from highly loaded to lightly loaded neighbors within each neigh-

borhood. This iterative process continues until the load is globally balanced. In [23]

only one iteration of the tiling algorithm is performed, thereby not achieving a global

balance in exchange for speed.

To incorporate more global information, Shephard et al. [58] use a modified

Tiling technique where the processors are hierarchically arranged as nodes in a tree.

The load is then balanced by iteratively migrating the work from heavily loaded

processors through the tree until the load distribution is within a specified tolerance.

This methodology has an improved worst case load imbalance over the fiat Tiling

model if enough iterations are permitted.

We believe that these local iterative techniques are not ideally suited for

dynamically balancing unsteady flow calculations. These applications are prone to

dramatically shifting the load distribution between adaption phases,, causing small

regions of the domain to suddenly incur high computational costs. Local diffusion

techniques would therefore be required to perform many iterations before global con-

vergence, or accept an unbalanced load in exchange for faster performance. Also,

by limiting task movement to nearest neighbors, a finite element may have to make

several hops before arriving at its final destination. Current hardware architectures

such as the IBM SP2 use wormhole routing making it unnecessary for a unit of work

to be moved to more than one processor. Since the remapping must be frequently

applied, its cost can become a significant part of the overall performance and must

therefore be minimized. By moving large chunks of work units directly to their



destinations,the high start up cost of interprocessor communication can be amor-

tized. We therefore assert that there exists a need for balancing strategies which can

globally coordinate the distribution of all workloads within the system.

1.2.3 General Global Methods

Many global load balancing approaches are addressed in the literature. The

Dimension Exchange Algorithm (DE) is a global technique which steps through each

dimension in a hypercube. At each step i a processor exchanges workload with its

dimension i neighbor in such a way that their load becomes equal. After log(P)

passes, all P processors are guaranteed to have the same workload. DE has been

shown to outperform several local schemes [74] including nearest neighbor diffusion

and hierarchical balancing methods. This algorithm is ideal for hypercubes and store-

and-forward networks, but is not well suited for wormhole routed systems since the

global movement of data will usually require multiple hops.

Another approach to global load balancing is based on prefix computations

or scans [33].

A scan (0, V) on a vector V = (V1,..., V,_) with the associative operator

@ gives as a result the vector of partial results (Is, V1, V1 • V2, • •., I/1 G Vn-1 ) where

I S is the identity for 0.

This operation can be carried out in O(logP) time. Load balancing techniques

based on this operation are interesting because they preserve decomposition locality,

i.e., given a definition of a neighborhood, tasks which are neighbors before the load

balance step will be neighbors afterwards as well.

The algorithm by Baigioni [6] first performs a scan of the load on each

processor, from which it calculates the flow. This is defined as the difference between

the processor index multiplied by the average work and the value for the scan in that

processor. The absolute value of the flow in any particular processor represents the
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activity that mustbemovedto anothertheprocessor.This algorithmguaranteesa

perfectloadbalance,but canonly communicatea unit of workonestepat a timeand

ismostsuitablefor SIMDarchitectures.A variationof thisalgorithmcalledPosition

ScanLoadBalancing(PSLB), communicatesthe work directly to the destination

processor,making it moresuitablefor MIMD systems[33]. This methodologyis

currently limited to structuredgrids and doesnot considersubdomainboundary

quality.

A theoreticalglobal techniqueby Bogleav[14] useslinear programming

algorithmsto exactly loadbalancetaskson arbitrary topologies.This solutionis

computedusingthe simplexmethodwhich is considereda fast and accurateop-

timization technique. Unfortunatelythe computationtime is polynomial in the

numberof elementswhichmakesit prohibitivelyexpensivewithin our framework.

Index-basedalgorithmsareanotherapproachto the partitioning problem

presentedby Ou,Ranka,andFox[51].First, verticesof agrapharemappedontoone

dimensionallist, which is then distributedamongthe processorsby assigningcon-

tiguousblocksof verticesto eachpartition. Whenthe computationalloadchanges,

thegraphcanberemappedbyrepartitioningthe one-dimensionallist. This requires

calculatingthe indicesof thenewverticesandcombiningthemwith the verticesof

theoriginallist, whichcorrespondsto merginganunsortedlist of integersto asorted

list. This operationcan thenbe performedquickly in parallel. Unfortunately,the

index-basedalgorithmsassumethat only smallperturbationsaremadein the load,

whichdoesnot holdtrue for unsteadyflowproblems.Subdomalninterfacequality

is alsoinferior to othermethods,sincemappingathreedimensionalgrid ontoaone

dimensionlist resultsin degradationof boundaryinformation.

In [58]anintegratedsystemisbuilt in a parallelframeworkwhichincludes:

meshgeneration,equationsolution,meshenrichment,meshmigration, and load

balancing.To date, this workmostlycloselyresemblesour efforts. Here,two load
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balancingschemesarecomparedin anadaptivegrid calculationona 128nodeIBM

SP2.Thefirst is a globalrepartitioningschemebasedon a parallelversionof Iner-

tial RecursiveBisection(PIRB) while the secondis the moreiterative approachof

hierarchicaltiling. PIRB hastwo advantagesoverIRB [44]in a parallelsetting: its

executiontimedecreasesasthe numberof processorsdecrease;andthe distributed

meshno longerneedsto begatheredon oneprocessorbeforethe partitioningphase

begins,whichcanbecomeanexpensiveoperationin both timeandspaceasthemesh

grows.Thepreliminarytestresultsindicatethat the iterativeloadmigrationscheme

tendsto bemorecomputationallyexpensivethan the globalPIRB algorithm,while

at the sametime yielding lowerquality subdomains.Although thesetestsareby

no meansexhaustive,they dosupportour claim that a globalmethodologyis the

superiorapproachfor addressingdynamicloadbalancingonthesetypesof problems.

1.2.4 Repartitioning Methods

It usually considered too expensive to repartition the entire domain in the

inner loop of adaptive flow calculations, due to the potentially high partitioning and

data movement cost. Some dynamic load balancing techniques reuse the original par-

tition by only considering the transfer of those elements located on the subdomains

boundaries. In the work of Vanderstraeten et al. [69] a decomposed domain under-

goes one level of adaptive refinement resulting in an unbalanced load. A comparison

is then made between retrofitting the original decomposition along its boundaries

(using SA) and performing the decomposition from scratch (using the Greedy tech-

nique of Farhat [57] followed by SA). The results indicate that the latter technique

performed faster, contained higher quality subdomains, and required fewer element

exchanges between partitions. Since the adaption phase created many new elements

in a small region, as is common in unsteady flows, the original decomposition is not

necessarily a good starting point for the retrofitting approach. Retrofitting is only
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usefulwhena smallpercentageof the elements are refined in a consistent manner

throughout the previously generated subdomains.

Many heuristics have been developed for graph partitioning since the op-

timal solution is an NP-hard problem [30]. Spectral bisection algorithms [25, 26]

are a class of partitioning techniques developed in the early 1970's which are known

to produce high quality subdomalns for a wide class of problems. These ideas were

extended in Recursive Spectral Bisection (RSB) by Simon [61] for partitioning finite

element meshes. Unfortunately, spectral methods are considered too expensive to

be performed within the inner loop of time critical computations. This is especially

true when the domain size grows in an adaptive refinement, since computing the

Fiedler vector for a problem of size n, is O(nv_ ) [2]. Several attempts have been

made to integrate spectral techniques with dynamic load balancing. Walshaw and

Berzins [74] propose a method called Dynamic Recursive Spectral Bisection (DRSB),

which limits the repartitioning time by clustering internal vertices and only allowing

boundary elements to move across partitions. In other words, mesh elements which

are far enough away from an interprocessor boundary will be ignored during the

repartitioning phase, resulting in a clusters of mesh elements separated by a strip of

elements along the boundaries. The spectral partitioning algorithm then proceeds

on the reduced size graph, under the assumption that clustered nodes will remain

in their original partitions. This technique is only applicable under the assumption

that there will be a small change in the domain size, otherwise it reverts back to the

standard RSB method.

In [68] Driessche and Roose propose extending the (recursive) spectral bi-

section algorithm so that it applies to dynamically changing grids. They propose a

repartitioning technique which not only ensures that the grid subdomains are equally

sized with short interfaces, but attempts to minimize the cost of element transfers

across partition boundaries. Traditional spectral techniques do not incorporate this
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i ._ component, which can be a very costly operation. This more complex problem

is modeled as a partitioning problem, by extending the original grid with virtual

edges and virtual vertices. One virtual vertex is added to each partition with virtual

edges added between the virtual vertex and the vertices that correspond to the grid

points that were originally assigned to that processor. The weight of a virtual edge

is equal to the cost of transferring the corresponding grid point to another processor.

A partition of the extended graph not only cuts ordinary edges but also a number

of virtual ones, thereby modeling both the application communication cost and the

element transfer cost. The run time of this method is comparable to traditional spec-

tral algorithms, but due to the extension, several iterations of the new partitioner

must be executed to achieve a perfect load balance.

The HARP [60] repartitioner has recently been proposed as a method for

balancing adaptive grids. This new algorithm is based on the observation that for

most discretized bodies, a significant portion of their structure can usually be cap-

tured with only a few of their eigenvectors. Therefore, a preprocessing step computes

and stores the appropriate number of eigenpairs. In order for these values to remain

valid, the connectivity of the graph must remain the same throughout the computa-

tion. This can be achieved by adding weights to the vertices of the original graph,

as elements become refined. Once the flow computation starts, the Fiedler vector no

longer needs to be computed at each iteration, resulting in partitioning times which

are several orders of magnitude faster than RSB. Note that since the connectivity of

the graph remains the same, the partitioner must assume that edge weights do not

change throughout the course of the computation. The impact of this restriction is

application specific.

Multilevel algorithms [34, 36, 40, 71] present a way to reduce the com-

putational requirement of partitioning, while maintaining high quality subdomains.

These algorithms reduce the size of the graph by collapsing vertices and edges. The
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smallergraphis thenpartitioned,andtheresultsareuncoarsenedto construct a par-

tition for the original graph. The most sophisticated schemes use several stages of

contraction and uncoarsening, and smooth the graph during the latter phase. It has

been shown [36] that for a variety of finite element problems, multilevel schemes can

provide higher partitioning quality than spectral methods at a lower cost. Chaco [34],

MeTiS [40], and Jostle [71] are three popular software package which provide several

powerful partitioning options.

Recently, severaJ parallel multilevel schemes have become available. An ad-

vantage of these algorithms is that they are fast enough to be included in the inner

loop of adaptive flow calculations. PMeTiS [41] and Jostle-MS [72] are parallel, mul-

tilevel, k-way partitioning codes. They are considered global algorithms since they

make no assumptions on how the graph is initially distributed among the processors.

PMeTiS uses a greedy graph growing algorithm for partitioning the coarsest graph,

and uncoarsens it by using a combination of boundary greedy and Kernighan-Lin [43]

refinement. Jostle-MS uses a greedy algorithm to partition the coarsest graph fol-

lowed by a parallel iterative scheme based on relative gain to optimize each of the

multilevel graphs.

UAMeTiS [62], DAMeTiS [62], and Jostle-MD [72] are diffusive multilevel

schemes which are designed to repartition adaptively refined meshes by modifying

the existing partitions. Reported results indicate that these algorithms produce par-

titions of quality comparable to that of their global counterparts, while dramatically

reducing the amount of data that needs to be moved due to repartitioning. UAMeTiS

and DAMeTiS perform local multilevel coarsening followed by multilevel diffusion

and refinement to balance the graphs while maintaining the edge-cut. The differ-

ence between these two algorithms is that UAMeTiS performs undirected diffusion

based on local balancing criteria, whereas DAMeTiS uses a 2-norm minimization
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algorithmat the coarsestgraph to guidetile diffusion,and is thus considereddi-

rected.Jostle-MDperformsgraphreductionon the existingpartitions, followedby

the optimizationtechniquesusedin Jostle-MS.Onemajor differencebetweenthese

diffusivealgorithmsis that Jostle-MDemploysa singleleveldiffusionscheme,while

UAMeTiSand DAMeTiSusemultileveldiffusion. An extensiveperformanceanal-

ysisof the MeTiSandJostlepartitionerswithin PLUMis presentedin Chapters 3

and 4.
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1.3 Thesis Outline

The remainderof this thesis is organized as follows. In Chapter 2, we

present our parallel implementation of a tetrahedral mesh adaption code. The par-

allel version consists of C++ and MPI code wrapped around the original serial mesh

adaption program of Biswas and Strawn [12]. An object-oriented approach allowed

a clean and efficient implementation. Experiments are performed on a realistic-

sized computational mesh used for a helicopter acoustics simulation. Results show

extremely promising parallel performance on 64 processors of an IBM-SP2.

Chapter 3 presents PLUM, an automatic portable framework for performing

adaptive numerical computations in a message passing environment. We describe the

implementation and integration of all major components within our dynamic load

balancing system. Several salient features of PLUM are described: (i) dual graph

representation, (ii) parallel mesh repartitioner, (iii) optimal and heuristic remapping

cost functions, (iv) efficient data movement and refinement schemes, and (v) accurate

metrics comparing the computational gain and the redistribution cost. The code is

written in C and C++ using the MPI message-passing paradigm and executed on

an SP2. Results demonstrate that PLUM is an effective dynamic load balancing

strategy which remains viable on a large number of processors.

Chapter 4 presents several experimental results that verify the effectiveness

of PLUM on sequences of dynamically adapted unstructured grids. We examine

portability by comparing results between the distributed-memory system of the IBM

SP2 and the Scalable Shared-memory MultiProcessing (S2MP) architecture of the

SGI/Cray Origin2000. Additionally, we evaluate the performance of five state-of-

the-art partitioning algorithms that can be used within PLUM. Results indicate that

a global repartitioner can outperform diffusive schemes in both subdomain quality

and remapping overhead. Finally, we demonstrate that PLUM works well for both

for both steady and unsteady adaptive problems with many levels of adaption, even
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when using a coarse initial mesh. A finer starting mesh may be used to achieve

lower edge cuts and marginally better load balanceing, but is generally not worth

the increased partitioning and data remapping times.

Chapter 5 contains a summary of our work, and some future directions for

this research.



CHAPTER2

PARALLEL TETRAHEDRAL MESHADAPTION

Accuratesimulationof the evolution of steady and unsteady aerodynamic

flows around complex bodies is a common challenge in many fields of computational

fluid dynamics. The unstructured discretization of the flow domain is an effective way

for dealing with the complex geometries and moving bodies. Hyperbolic PDEs are

dominated by the propagation and interaction of waves, which occupy a small portion

of the problem domain. Therefore the advantage of solutions on unstructured grids

in comparison to structured ones, is the excellent flexibility of adapting the mesh

to the local requirements of the solution. The drawbacks are the relatively high

demands on computational time and storage. This can be compensated by using

fine grids to represent the relatively small regions occupied by flow field phenomena,

while representing the remaining regions with coarser grids. These savings in storage

and CPU requirements typically range between. 50-100 compared to an overall fine

mesh [48] for a given spatial accuracy.

Two solution-adaptive strategies are commonly used with unstructured-

grid methods. Regeneration schemes generate a new grid with a higher or lower

concentration of points in different regions depending on an error indicator. A major

disadvantage of such schemes is that they are computationally expensive. This is a

serious drawback for unsteady problems where the mesh must be frequently adapted.

However, resulting grids are usually well-formed with smooth transitions between

regions of coarse and fine mesh spacing.

Local mesh adaption, on the other hand, involves adding points to the

existing grid in regions where the error indicator is high, and removing points from
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regionswheretheindicatoris low. Theadvantageof such strategies is that relatively

few mesh points need to be added or deleted at each refinement/coarsening step for

unsteady problems. However, complicated logic and data structures are required to

keep track of the points that are added and removed.

For problems that evolve with time, local mesh adaption procedures have

proved to be robust, reliable, and efficient. By redistributing the available mesh

points to capture flowfield phenomena of interest, such procedures make standard

computational methods more cost effective. Highly localized regions of mesh refine-

ment are required in order to accurately capture shock waves, contact discontinuities,

vortices, and shear layers. This provides scientists the opportunity to obtain solu-

tions on adapted meshes that are comparable to those obtained on globally-refined

grids but at a much lower cost.

Advances in adaptive software and methodology notwithstanding, parallel

computational strategies will be an essential ingredient in solving complex real-life

problems. However, parallel computers are easily programmed with regular data

structures; so the development of efficient parallel adaptive algorithms for unstruc-

tured grids poses a serious challenge. Their parallel performance for supercomput-

ing applications not only depends on the design strategies, but also on the choice

of efficient data structures which must be amenable to simple manipulation without

significant memory contention (for shared-memory architectures) or communication

overhead (for message-passing architectures).

A significant amount of research has been done to design sequential algo-

rithms to effectively use unstructured meshes for the solution of fluid flow applica-

tions. Unfortunately, many of these techniques cannot take advantage of the power

of parallel computing due to the difficulties of porting these codes onto distributed-

memory architectures. Recently, several adaptive schemes have been successfully de-

veloped in a parallel environment. Most of these codes are based on two-dimensional
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finiteelements[3, 4, 7, 9, 16, 38, 39, 55], and some progress has been made towards

three-dimensional unstructured-mesh simulations [8, 50, 56, 58].

This chapter presents an efficient parallel implementation of a dynamic

mesh adaption code [12] which has shown good sequential performance. The parallel

version consists of an additional 3,000 lines of C++ with Message-Passing Interface

(MPI), allowing portability to any system supporting these languages. This code is

a wrapper around the original mesh adaption program written in C, and requires

almost no changes to the serial code. Only a few lines were added to link it with the

parallel constructs. An object-oriented approach allowed this to be performed in a

clean and efficient manner.

2.1 Serial Mesh Adaption Overview

We give a brief description of the tetrahedral mesh adaption scheme [12]

that is used in this work to better explain the modifications that were made for

the distributed-memory implementation. The code, called 3D_TAG, has its data

structures based on edges that connect the vertices of a tetrahedral mesh. This

means that the elements and boundary faces are defined by their edges rather than by

their vertices. These edge-based data structures make the mesh adaption procedure

capable of efficiently performing anisotropic refinement and coarsening. A successful

data structure must contain the right amount of information to rapidly reconstruct

the mesh connectivity when vertices are added or deleted while having reasonable

memory requirements.

Recently, the 3D_TAG code has been modified to refine and coarsen hexahe-

dral meshes [13]. The data structures and serial implementation for the hexahedral

scheme are similar to those for the tetrahedral code. Their parallel implementa-

tions should also be similar; however, this chapter focuses solely on tetrahedral mesh

adaption.
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At eachmeshadaptionstep,individual edgesaremarkedfor coarsening,

refinement,or no change,basedonanerror indicatorcalculatedfrom theflowsolu-

tion. Edgeswhoseerror valuesexceeda user-specifiedupperthresholdaretargeted

for subdivision.Similarly,edgeswhoseerror valueslie belowanotheruser-specified

lower thresholdare targetedfor removal.Only threesubdivisiontypesareallowed

for eachtetrahedralelementandtheseareshownin Fig.2.1. The 1:8isotropicsub-

divisionis implementedby addinga newvertexat the mid-pointof eachof the six

edges.The 1:4and 1:2subdivisionscanresulteither becausethe edgesof a parent

tetrahedronaretargetedanisotropicallyor becausetheyarerequiredto form a valid

connectivityfor the newmesh.Whenanedgeis bisected,thesolutionquantitiesare

linearlyinterpolatedat the mid-point from its twoend-points.

1:8 1:4 1:2

Figure 2.1: Three types of subdivision are permitted for a tetrahedral element.

Mesh refinement is performed by first setting a bit flag to one for each

edge that is targeted for subdivision. The edge markings for each element are then

combined to form a 6-bit pattern as shown in Fig. 2.2 where the edges marked with an

R are the ones to be bisected. Elements are continuously upgraded to valid patterns

corresponding to the three allowed subdivision types until none of the patterns show

any change. Once this edge marking is completed, each element is independently

subdivided based on its binary pattern. Special data structures are used to ensure

that this process is computationally efficient.
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Meshcoarseningalsousesthe edge-markingpatterns. If a child element

hasanyedgemarkedfor coarsening,this elementand its siblingsareremovedand

their parentis reinstated.Parentedgesandelementsareretainedat eachrefinement

stepsotheydonot haveto bereconstructed.Reinstatedparentelementshavetheir

edge-markingpatternsadjustedto reflect that someedgeshavebeencoarsened.

The parentsarethensubdividedbasedon their newpatternsby invokingthe mesh

refinementprocedure.As a result, the coarseningandrefinementproceduresshare

muchof the samelogic.

Therearesomeconstraintsfor meshcoarsening.Forexample,edgescannot

becoarsenedbeyondtheinitial mesh.Edgesmustalsobecoarsenedin anorderthat

is reversedfrom theoneby whichtheywererefined.Moreover,anedgecancoarsen

if and only if its siblingis alsotargetedfor coarsening.Moredetailsabout these

coarseningconstraintsaregivenin [12].

Detailsof the datastructuresaregivenin [12];however,a brief description

of the salientfeaturesis necessaryto understandthe distributed-memoryimple-

mentationof the meshadaptioncode.Pertinentinformationis maintainedfor thc

vertices,elements,edges,and boundary_facesof the mesh. For eachvertex, the

coordinatesarestoredin coord[3], the flowsolutionin soln [S], anda pointer to

the first entry in the edgesublistin odges. The edge sublist for a vertex contains

pointers to all the edges that are incident upon it. Such sublists eliminate extensive

6 5 4 3 2 1 Edge number

0 0 1 0 1 1 Pattern--ll

Figure 2.2: Sample edge-marking pattern for element subdivision.
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searchesand arecrucialto the efficiencyof tile overalladaptionscheme.The tetra-

hedralelementshavetheir sixedgesstoredin todge[6], theedge-markingpatternin

part, the parentelementin tparont, andthefirst childelementin tchild. Sibling

elementsalwaysresidecontiguouslyin memory;hence,a parentelementonly needs

apointer to thefirst child. Foreachedge,westoreits twoend-pointsin vortex [2],

its parentedgein eparent, its two children edges in echild[2], the two boundary

faces it defines in bfac [2], and a pointer to the first entry in the element sublist in

slems. The element sublist for an edge contains pointers to all the elements that

share it. Finally, for each boundary face, we store the three edges in bedga [3], the

element to which it belongs in belem, the parent in bparent, and the first child in

bchild. Sibling boundary faces, like elements, are stored consecutively in memory.

2.2 Distributed-Memory Implementation

The parallel implementation of the 3D_TAG mesh adaption code consists

of three phases: initialization, execution, and finalization. The initialization step

consists of scattering the global data across the processors, defining a local numbering

scheme for each object, and creating the mapping for objects that are shared by

multiple processors. The execution step runs a copy of 3D_TAG on each processor

that refines or coarsens its local region, while maintaining a globally-consistent grid

along partition boundaries. Parallel performance is extremely critical during this

phase since it will be executed several times during a flow computation. Finally,

a gather operation is performed in the finalization step to combine the local grids

into one global mesh. Locally-numbered objects and the corresponding pointers are

reordered to represent one single consistent mesh.

In order to perform parallel mesh adaption, the initial grid must first be

partitioned among the available processors. A good partitioner should divide the

grid into equal pieces for optimal load balancing, while minimizing the number of
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edgesalongpartition boundariesfor low interprocessorcommunication.It is also

important that within our framework,the partitioningphasebe performedrapidly.

Someexcellentparallelpartitioning algorithmsarenow available[40, 58, 60, 70];

however,weneedonethat is extremelyfastwhilegivinggoodloadbalanceand low

edgecuts. For this setof experimentsthe parallelMeTis (PMeTiS)partitionerof

Karypis and Kumar [40]wasused.The PMeTiSalgorithmis briefly describedin

Sec.1.2.4,andadetailedanalysisofits performanceispresentedin Secs.3.8and4.2.

2.2.1 Initialization

Theinitialization phasetakesasinput the globalinitial grid andthe corre-

spondingpartitioningthat mapseachtetrahedra]elementto exactlyonepartition.

The elementdata and partition informationare then broadcastto all processors

which, in parallel, assigna local, zero-basednumberto eachelement. Oncethe

elementshavebeenprocessed,localedgeinformationcanbecomputed.

In threedimensions,anindividualedgemaybelongto anarbitrary number

of elements. Sinceeachelementis assignedto only onepartition, it is theoreti-

cally possiblefor anedgeto besharedby all the processors.For eachpartition, a

local zero-basednumberis assignedto everyedgethat belongsto at leastoneele-

ment. Eachprocessorthen redefinesits elementsin tedge[6] in termsof theselocal

edgenumbers.Edgesthat aresharedby morethan oneprocessorareidentifiedby

searchingfor elementsthat lie on partition boundaries.A bit flag is set to distin-

guishbetweensharedand internaledges.A list of sharedprocessors(SPL) is also

generatedfor eachsharededge.Finally,the elementsublistin olems for each edge

is updated to contain only the local elements.

The vertices are initialized using the vertex[2] data structure for each

edge. Every local vertex is assigned a zero-based number in each partition. Next the

local edge sublist for each vertex is created from the appropriate subset of the global
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edges array. Like shared edges, each shared vertex must be identified and assigned

its SPL. A naive approach would be to thread through the data structures to the

elements and their partitions to determine which vertices lie on partition boundaries.

A faster approach is based on the following two properties of a shared vertex: it must

be an end-point for at least one shared edge, and its SPL is the union of its shared

edges' SPLs. However, some communication is required when using this method.

An example is shown in Fig. 2.3 where the SPL is being formed in P0 for the center

vertex that is shared by three other processors. Without communication, P0 would

incorrectly conclude that the vertex is shared only with P1 and P3. For each vertex

containing a shared edge in its edges sublist, that edge's SPL is communicated to

the processors in the SPLs of all other shared edges until the union of all the SPLs

is formed. For the cases in this paper, this process required no more than three

iterations, and all shared vertices were processed as a function of the number of

shared edges plus a small communication overhead.

"-..e e/"

Before communication

P0 shares center vertex with P 1, P3

e @9 e/

After communication

P0 shares center vertex with P 1, P2, P3

Figure 2.3. An example showing the communication need to form the SPL for a
shared vertex.

The final step in the initialization phase is the local renumbering of the

external boundary faces. Since a boundary face belongs to only one element, it is

never shared among processors. Each boundary face is defined by its three edges in

bedge [3], while each edge maintains a pair of pointers in bfac [23 to the boundary

faces it defines. Since the global mesh is closed, an edge on the external boundary
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is sharedby exactlytwo boundaryfaces. However,whenthe meshis partitioned,

this is no longertrue. An exampleis shownin Fig. 2.4. An affectededgecreates

anemptyghostboundaryfacein eachof the twoprocessorsfor theexecutionphase

whichis latereliminatedduringthe finalizationstage.

Beforepartitioning
GlobaledgeGE5sharedby

globalbdyfacesGBF7andGBF8

., ®

Ghost "'

'",, Ghost

After partitioning
GE5 stored as LE 1 and LE3 in P0 and P 1

GBF7 as LBF3 in P0; GBF8 as LBF0 in PI

Figure 2.4. An example showing how boundary faces are represented at partition
boundaries.

A new data structure has been added to the serial code to represent all

this shared information. Each shared edge and vertex contains a two-way mapping

between its local and its global numbers, and a SPL of processors where its shared

copies reside. The maximum additional storage depends on the number of processors

used and the fraction of shared objects. For the cases in this chapter, this was less

than 10% of the memory requirements of the serial version.

2.2.2 Execution

The first step in the actual mesh adaption phase is to target edges for re-

finement or coarsening. This is usually based on an error indicator for each edge that

is computed from the flow solution. This strategy results in a symmetrical marking

of all shared edges across partitions since shared edges have the same flow and ge-

ometry information regardless of their processor number. However, elements have

to be continuously upgraded to one of the three allowed subdivision patterns shown
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in Fig. 2.1. This causes some propagation of edges being targeted that could mark

local copies of shared edges inconsistently. This is because the local geometry and

marking patterns affect the nature of the propagation. Communication is therefore

required after each iteration of the propagation process. Every processor sends a

list of all the newly-marked local copies of shared edges to all the other processors

in their SPLs. This process may continue for several iterations, and edge markings

could propagate back and forth across partitions.

Figure 2.5 shows a two-dimensional example of two iterations of the prop-

agation process across a partition boundary. The process is similar in three dimen-

sions. Processor P0 marks its local copy of shared edge GEl and communicates that

to P1. P1 then marks its own copy of GEl, which causes some internal propagation

because element marking patterns must be upgraded to those that are valid. Note

that P1 marks its third internal edge and its local copy of shared edge GE2 during

this phase. Information about the shared edge is then communicated to P0, and

the propagation phase terminates. The four original triangles can now be correctly

subdivided into a total of 12 smaller triangles.

GE2 GE2

• Shared mark

o Internal mark

GEl @ ,[ /GEl

--- Shared edge
-- Internal edge
..... New edge

Figure 2.5. A two-dimensional example showing communication during propagation

of the edge marking phase.

Once all edge markings are complete, each processor executes the mesh

adaption code without the need for further communication, since all edges are con-

sistently marked. The only task remaining is to update the shared edge and vertex
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information as the mesh is adapted. This is handled as a post-processing phase.

New edges and vertices that are created during refinement are assigned

shared processor information that depends on several factors. Four different cases

can occur when new edges are created.

• If an internal edge is bisected, the center vertex and all new edges incident on

that vertex are also internal to the partition. Shared processor information is not

required in this case.

• If a shared edge is bisected, its two children and the center vertex inherit its SPL,

since they lie on the same partition boundary.

• If a new edge is created in the interior of an element, it is internal to the par-

tition since processor boundaries only lie along element faces. Shared processor

information is not required.

• If a new edge is created that lies across an element face, communication is required

to determine whether it is shared or internal. If it is shared, the SPL must be

formed.

All the cases are straightforward, except for the last one. If the intersection

of the SPLs of the two end-points of the new edge is null, the edge is internal. Oth-

erwise, communication is required with the shared processors to determine whether

they have a local copy of the edge. This communication is necessary because no

information is stored about the faces of the tetrahedral elements. An alternate solu-

tion would be to incorporate faces as an additional object into the data structures,

and maintaining it through the adaption. However, this does not compare favor-

ably in terms of memory or CPU time to a single communication at tile end of the

refinement procedure.

Figure 2.6 shows the top view of a tetrahedron in processor P0 that shares

two faces with P1. In P0, the intersection of the SPLs for the two end-points of all

the three new edges LEI, LE2, and LE3 yields P1. However, when P0 communicates
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this informationto P1,P1will onlyhavelocalcopiescorrespondingto LE1andLE2.

Thus,P0 will classifyLE1and LE2assharededgesbut LE3asan internaledge.

[] Shared face with P1

Internal face of PO

-- Shared edge with P1

Internal edge of P0

LE3

Figure 2.6. An example showing how a new edge across a face is classified as shared
or internal.

The coarsening phase purges the data structures of all edges that are re-

moved, as well as their associated vertices, elements, and boundary faces. No new

shared processor information is generated since no mesh objects are created during

this step. However, objects are renumbered as a result of compaction and all internal

and shared data are updated accordingly. The refinement routine is then invoked to

generate a valid mesh from the vertices left after the coarsening.

2.2.3 Finalization

Under certain conditions, it is necessary to create a single global mesh after

one or more adaption steps. Some post processing tasks, such as visualization, need

to processes the whole grid simultaneously. Storing a snapshot of a grid for future

restarts could also require a global view. Our finalization phase accomplishes this

goal by connecting the individual subgrids into one global data structure.

Each local object is first assigned a unique global number. Next, all lo-

cal data structures are updated in terms of these global numbers. Finally, gather

operations are performed to a host processor to create the global mesh. Individ-

ual processors are responsible for correctly arranging the data so that the host only

collects and concatenates without further processing.
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It is relatively simple to assign global element numbers since elements are

not shared among processors. By performing a scan-reduce add on the total number

of elements, each processor can assign the final global element number. The global

boundary face numbering is also done similarly since they too are not shared among

processors.

Assigning global numbers to edges and vertices is somewhat more compli-

cated since they may be shared by several processors. Each shared edge (and vertex)

is assigned an owner from its SPL which is then responsible for generating the global

number. Owners are randomly selected to keep the computation and communication

loads balanced. Once _ll processors complete numbering their edges (and vertices),

a communication phase propagates the global values from owners to other processors

that have local copies.

After global numbers have been assigned to every object, all data structures

are updated to contain consistent global information. Since elements and boundary

faces are unique in each processor, no duplicates exist. All unowned edge copies are

removed from the data structures, which are then compacted. However, the element

sublists in elems cannot be discarded for the unowned edges. Some communication

is required to adjust the pointers in the local sublists so that global sublists can be

formed without any serial computation. The pair of pointers in bfac [2-] that were

split during the initialization phase for shared edges are glued back by communicating

the boundary face information to the owner. Vertex data structures are updated

much like edges except for the manner in which their edge sublists in edges are

handled. Since shared vertices may contain local copies of the same global edge

in their sublists on different processors, the unowned edge copies are first deleted.

Pointers are next adjusted as in the elems case with some communication among

processors.

At this time, all processors have updated their local data with respect to
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their relative positions in the final global data structures. A gather operation by a

host processor is performed to concatenate the local data structures. The host can

then interface the global mesh directly to the appropriate post-processing module

without having to perform any serial computation.

2.3 Euler Flow Solver

An important component of the mesh adaption procedure is a numerical

solver. Since we are currently interested in rotorcraft computational fluid dynamics

(CFD) problems, we have chosen an unstructured-grid Euler flow solver [64] for the

numerical calculations in this paper. It is a finite-volume upwind code that solves for

the unknowns at the vertices of the mesh and satisfies the integral conservation laws

on nonoverlapping polyhedral control volumes surrounding these vertices. Improved

accuracy is achieved by using a piecewise linear reconstruction of the solution in

each control volume. For helicopter problems, the Euler equations are written in an

inertial reference frame so that the rotor blade and grid move through stationary

air at the specified rotational and translational speeds. Fluxes across each control

volume are computed using the relative velocities between the moving grid and the

stationary far field. For a rotor in hover, the grid encompasses an appropriate fraction

of the rotor azimuth. Periodicity is enforced by forming control volumes that include

information from opposite sides of the grid domain. The solution is advanced in time

using conventional explicit procedures.

The code uses an edge-based data structure that makes it particularly com-

patible with the 3D_TAG mesh adaption procedure. Furthermore, since the number

of edges in a mesh is significantly smaller than the number of faces, cell-vertex edge

schemes are inherently more efficient than cell-centered element methods. Finally,

an edge-based data structure does not limit the user to a particular type of volume

element. Even though tetrahedral elements are used in this paper, any arbitrary
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combinationof polyhedracanbeused[13]. This is alsotrue for our dynamicload

balancingprocedure,

2.4 Experimental Results

The parallel 3D_TAG procedure was originally implemented on the wide

node IBM SP2 distributed-memory multiprocessor located at NASA Ames Research

Center. The code is written in C and C++, with the parallel activities in MPI

for portability. Note that no SP2-specific optimizations were used to obtain the

performance results reported in this section. Portability results are presented in

Chapter 4.

The computational mesh is the one used to simulate the acoustics experi-

ment of Purcell [54] where a 1/Tth scale model of a UH-1H helicopter rotor blade was

tested over a range of subsonic and transonic hover-tip Mach numbers. Numerical

results and a detailed report of the simulation are given in [65]. This chapter reports

only on the performance of the distributed-memory version of the mesh a daption

code. A cut-out view of the initial tetrahedral mesh is shown in Fig 2.7.
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Figure 2.7: Cut-out view of the initial tetrahedral mesh.
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Performanceresultsfor the parallelcodearepresentedfor onerefinement

and onecoarseningstep usingvariousedge-markingstrategies.Six strategiesare

usedfor therefinementstep.Thefirst setof experiments,denotedasRANDOM_IR,

RANDOM_2R, and RAN DOM_3R, consists of randomly bisecting 5%, 33%, and 60% of

the edges in the mesh, respectively. The second set, denoted as REA L_I R, REAL_2R,

and RZAL_3R, consists of bisecting the same numbers of edges using an error indica-

tor [65] derived from the actual flow solution described in Sec. 2.3. These strategies

represent significantly different scenarios. In general, the RAN DOM cases are expected

to behave somewhat ideally because the computational loads are automatically bal-

anced.

Table 2.1. Progression of Grid Sizes through Refinement and Coarsening for the
Different Strategies

Vertices Elements Edges Bdy Faces

Initial Mesh 13,967 60,968 78,343 6,818
REFINEMENT

RANDOM_IR 18,274 82,417 104,526 7,672

REAL_I R 17,880 82,489 104,209 7,682

RANDOM_2R 39,829 201,734 246,949 10,774

REAL_2R 39,332 201,780 247,115 12,008

RANDOM_3R 60,916 320,919 389,686 15,704

REAL_3R 61,161 321,841 391,233 16,464

COARSENING

RANDOM_.2C 21,756 100,537 126,448 8,312

REAL_2C 20,998 100,124 125,261 8,280

Since the coarsening procedure and performance are similar to the refine-

ment method, only two cases are presented where 7% of the edges in the refined

meshes obtained with the RANDOM_2R and the REAL2R strategies are respectively

coarsened randomly (RANDOM_2C) or based on actual flow solution (REAL_2C). Ta-

ble 2.1 presents the progression of grid sizes through the two adaption steps for each

edge-marking strategy.
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2.4.1 Refinement Phase

Table 2.2 presents the timings and parallel speedup for the refinement

step with the random marking of edges (strategies RANDOM_IR, RANDOM_2R, and

RANDOM_3R). Performance is excellent with efficiencies of more than 83% on 32

processors and 76% on 64 processors for the R,ANDOM_3R case. Parallel mesh re-

finement shows a markedly better performance for RANDOM_3R due to its bigger

computation-to-communication ratio. In general, the total speedup will improve as

the size of the refined mesh increases. This is because the mesh adaption time will

increase while the percentage of elements along processor boundaries will decrease.

Table 2.2: Performance of Mesh Refinement when Edges are Bisected Randomly

RANDOM _1 R RAN DOM_2 R RANDOM _3 R

I I IP Shared Time Time Up Time Time Up Time Time Up

1 0.0% 7.044 0.000 1.00 26.904 0.000 1.00 45.015 0.000 1.00

2 1.9% 3.837 0.001 1.84 13.878 0.002 1.94 22.762 0.003 1.98

4 3.7% 2.025 0.002 3.48 7.605 0.004 3.54 11.569 0.004 3.89

8 6.6% 1.068 0.003 6.58 4.042 0.006 6.65 5.913 0.006 7.61

16 8.8% 0.587 0.007 11.86 2.293 0.013 11.67 3.191 0.008 14.07

32 11.6% 0.330 0.010 20.72 1.338 0.022 19.78 1.678 0.013 26.62

64 15.3% 0.191 0.023 32.92 0.711 0.040 35.82 0.896 0.029 48.66

Notice also from Table 2.2 that the communication time is less than 3%

of the total time for up to 32 processors for all three cases. On 64 processors,

the communication time although still quite small, is only an order of magnitude

smaller than the computation time for RANDOM_IR. This begins to adversely affect

the parallel speedup and indicates that the saturation point has been reached for

this case in terms of the number of processors that should be used. Each partition

contains less than 1,000 elements with more than 15% of the edges on partition

boundaries when 64 processors are used. Since additional work and storage are

necessary for shared edges, the speedup deteriorates as the percentage of such edges

increases. The situation is much better for RAN DOM_3R since the computation time
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is significantlyhigher.

Table2.3. Performanceof MeshRefinementwhenEdgesareBisectedbasedonFlow
Solution

P

1

2

4

8

16

32

64

REAL_I R REAL_2R REAL_3R

Edges Cmp Cmm[ Spd Cop ] Cmm[ Spd Cmp] Cmm] SpdShared Time Time Up Time Time Up Time Time Up

0.0% 5.902 0.000 1.00 23.780 0.000 1.00 41.702 0.000 1.00

1.9% 3.979 0.002 1.48 18.117 0.003 1.31 26.317 0.003 1.58

3.7% 2.530 0.002 2.33 9.173 0.002 2.59 14.266 0.002 2.92

6.6% 1.589 0.003 3.71 7,091=- 0.004 3.35 . 8.430. 0.003 4.95

8.8% 1.311 0.006 4.48 4.046 0.006 5.87 4.363 0.004 9.55

11.6% 0.879 0.009 6.65 2.277 0.010 10.40 2.278 0.007 18.25

15.3% 0.616 0.024 9.22 1.224 0.017 19.16 1.148 0.012 35.95

Table 2.3 shows the timings and speedup when edges are marked using an

actual flow solution-based error indicator. Performance is extremely poor, especially

for REAL_IR and REAL_2R, with speedups of only 9.2X and 19.2X on 64 proces-

sors, respectively. This is because mesh adaption for practical problems occurs in a

localized region, causing an almost worst case load-balance behavior. Elements are

targeted for refinement on only a small subset of the available processors. Most of

the processors remain idle since none of their assigned elements need to be refined.

Performance is somewhat better for the REAL_3R strategy since the refinement re-

gion is much larger. Since 60% of all edges are bisected in this case, most of the

processors are busy doing useful work. This is reflected by an efficiency of more than

56% on 64 processors.

Note also from Table 2.3 that the communication times constitute a much

smaller fraction of the total time compared to the results in Table 2.2. This is due

to the difference in the distribution of bisected edges. The RANDOM cases require

significantly more communication among processors at the partition boundaries be-

cause refinement is scattered all over the problem domain. The REAL cases, on the

other hand, require much less communication since the refined regions are localized

and mostly contained within partitions.
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Poor parallel performance of the mesh refinement code for the three REAL

strategies is due to severe load imbalance. It is therefore worthwhile trying to load

balance this phase of the mesh adaption procedure as much as possible. This can

be achieved by splitting the mesh refinement step into two distinct phases of edge

marking and mesh subdivision. After edges are marked for bisection, it is possible

to exactly predict the new refined mesh before actually performing the subdivision

phase. The mesh is repartitioned if the edge markings are skewed beyond a specified

tolerance. All necessary data is then appropriately redistributed and the mesh ele-

ments are refined in their destination processors. This enables the subdivision phase

to perform in a more load-balanced fashion. Additionally, a smaller volume of data

has to be moved around since remapping is performed before the mesh grows in size

due to refinement. A performance analysis of the remapping procedure is presented

in Chapters 3 and 4.

Table 2.4. Performance of "Load-Balanced" Mesh Refinement when Edges are Bi-

sected based on Flow Solution

REAL_IR REAL_2R REAL_3R

Cmp ] Cmm I Spd Cmp ] Cmm ] Spd Cmp [ Cmm ] SpdP Time Time Up Time Time Up Time Time Up

1 5.902 0.000 1.00 23.780 0.000 1.00 41.702 0.000 1.00

2 3.311 0.001 1.78 12.059 0.001 1.97 21.592 0.001 1.93

4 1.980 0.001 2.98 6.733 0.001 3.53 10.975 0.002 3.80

8 1.369 0.003 4.30 3.430 0.004 6.92 5.678 0.004 7.34

16 0.702 0.006 8.34 1.840 0.006 12.88 2.899 0.004 14.37

32 0.414 0.011 13.89 1.051 0.010 22.41 1.484 0.006 27.99

64 0.217 0.030 23.89 0.528 0.022 43.24 0.777 0.017 52.52

Using this methodology, the three REAL cases were run again. Table 2.4

presents the performance results of this "load-balanced" mesh refinement step. Com-

pared to the results in Table 2.3, the parallel speedups are now much higher. In

fact, the speedups for REAL_2R consistently beats the corresponding speedups for



37

RANDOM_2R,whileREAL_3RoutperformsRANDOM_3Rwhenmorethaneightpro-

cessorsareused.Eventhoughthe RANDOM cases are expected to behave somewhat

ideally, these results show that explicit load balancing can do better. An efficiency

of 82% is attained for REAL_3R on 64 processors, thereby demonstrating that mesh

adaption can deliver excellent speedups if the marked edges are well-distributed

among the processors. Communication requires a larger fraction of the total time

for the cases in Table 2.4 than for the cases in Table 2.3. This is because the mesh

refinement work is distributed among more processors after load balancing. How-

ever, communication times are still relatively small, requiring less than 4% of the

total time for all runs except for REAL_IR on 64 processors.

Table 2.5: Quality of Load Balance Before and After Mesh Refinement

AL_3R LB RE_

A--_er B--_oTe [ After ]

1 1.000 1.000

2 1.000 1.016

4 1.000 1.033

8 1.000 1.085

16 1.000 1.167

32 1.001 1.226

64 1.005 1.506

1.000 1.000 1.000

1.000 1.556 1.406

1.000 2.188 1.948

1.000 6.347 2.654

1.000 5.591 4.025

1.001 7.987 4.212

1.005 8.034 6.709

1.000

1.000

1.000

1.000

1.000

1.000

1.004

The effect of load balancing the refined mesh before performing the actual

subdivision can be seen more directly from the results presented in Table 2.5 for

RAN DOM_3R a_d R_A L_3R. The quality of load balance is defined as the ratio of the

number of elements on the most heavily-loaded processor to the number of elements

on the most lightly-loaded processor. For the RANDOM_3R strategy, the mesh was

refined without any load balancing. Two different sets of results are presented for

REAL_3R: one without load balancing (NLB) and the other using the technique of

load-balanced mesh refinement (LB). Notice that the quality of load balance before

refinement is excellent, and identical, for both RANDOM_3R and NLB REAL_3R
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becausethe initial meshis partitioned usingPMeTiS [40]. However,after mesh

refinement,the loadimbalanceis severe,particularlyfor NLB REAL_3R.The load

imbalanceis not too bad for RANDOM_3Rsinceedgesare randomlymarkedfor

refinement.This is reflectedby the differencein the speedupvaluesin Tables2.2

and 2.3. For LB REAL_3R,the initial meshis repartitionedafter edgemarking

is complete.This imbalancesthe load beforerefinement,but generatesexcellently

balancedpartitionsaftersubdivisioniscomplete.It alsoimprovesthespeedupvalues

significantly.

2.4.2 Coarsening Phase

The coarseningphaseconsistsof three major steps: marking edgesto

coarsen,cleaningup all thedatastructuresby removingthoseedgesandtheir asso-

ciatedverticesandtetrahedralelements,andfinally invokingthe refinementroutine

to generateavalid meshfrom the verticesleft after the coarsening.

Table2.6: Performanceof MeshCoarsening

RANDOM_2C

Comp I CommP Time

1 3.619

2 1.832

4 0.963

8 0.572

16 0.303

32 0.170

64 0.070

Comm

Time Time

2.364

1.352

0.782

0.498

0.287

0.170

0.098

0.001

0.002

0.004

0.005

0.008

0.013

0.024

REAL_2C

Total Comp

Speedup Time

1.00 3.989 2.246

1.88 2.026 1.283

3.42 1.066 0.854

5.57 0.600 0.498

10.01 0.334 0.279

16.95 0.167 0.161

31.17 0.093 0.097

Comm Comm Total

Time Time Speedup

0.000

0.000

0.000

0.000

0.000

0.000

0.000

1.00

1.88

3.25

5.68

10.17

19.01

32.82

Timings and parallel speedup for the RAN DOM_2C and the REAL_2C coars-

ening strategies are presented in Table 2.6. Note that the follow-up mesh refinement

times are not included. This was done in order to demonstrate the parallel per-

formance of the modules that are only required during the coarsening phase. The

computation time in Table 2.6 is the time required to mark edges for coarsening.
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Notice that the communicationtime is generallynegligiblefor RANDOM_2Cand

identicallyzerofor REAL_2C.Nocommunicationwasrequiredfor REAL_2Cto de-

cide which edgesto coarsen. The amountof communicationneededduring the

coarseningphasedependsboth on the problemand the nature of the coarsening

strategy;however,the situation canneverbe worsethan the correspondingRAN-

DOMcase.The cleanuptime, on the other hand, is always a significant fraction of

the total time. The cleanup time decreases as more and more processors are used

due to the reduction in the local mesh size for each individual partition; however,

since it depends on the fraction of shared objects, performance deteriorates as the

problem size is over-saturated by processors. For instance, even though the total

efficiency is about 50% for 64 processors for the results in Table 2.6, the efficiency

when considering only the cleanup times is barely 37%.

2.4.3 Initialization and Finalization Phases

Table 2.7. Performance of Initialization and Finalization Steps for REAL_IR Strategy

P

1

2

4

8

16

32

64

Initialization Finalization

Comp Bcast Total Comp Gather Total

Time Time Speedup Time Time Speedup

6.098 0.344 1.00 11.380 1.227 1.00

3.315 0.677 1.61 8.309 1.154 1.33

1.807 1.199 2.14 4.410 1.136 2.27

1.074 0.857 3.34 3.340 1.169 2.80

0.622 1.022 3.92 1.973 1.202 3.97

0.378 1.253 3.95 1.125 1.357 5.08

0.330 1.605 3.33 0.652 1.497 5.87

Recall from Fig. 1.1 that unlike the execution phase where the actual adap-

tion is performed, it is not critical for the initialization and finalization procedures

to be very efficient since they are used rarely (or only once) during a flow computa-

tion. Table 2.7 presents the results for these two phases for the REAL_IR strategy.

The initialization step is thus performed on the starting mesh consisting of 60,968
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elements,whilethefinalizationphaseis for therefinedmeshconsistingof 82,489el-

ements.It is apparentfrom thetimingsthat the performancebottleneckfor thetwo

stepsare the globalbroadcast(one-to-all)and gather (all-to-one)communication

patterns,respectively.Thesetimesgenerallyincreasewith the numberof processors

so a speedupcannot beexpected. However,the computationalsectionsof these

proceduresdoshowfavorablespeedupsof 18.5Xand 17.5Xon64processors.In any

case,the overallrun timesof theseroutinesareacceptablefor our purposes.Note

that thebroadcastandgathertimesarenon-zeroevenfor asingleprocessorbecause

the currentimplementationusesa host to perform the data I/O. The numberof

processorsshownin Table2.7indicatesthosethat areactuallyperformingthe mesh

adaption.



CHAPTER3

DYNAMIC LOAD BALANCING

In this chapter, we present a novel method, called PLUM, to dynamically

balance the processor workloads for unstructured adaptive-grid computations with

a global view. Portions of this work reported earlier [10, 11, 52, 53, 63] have success-

fully demonstrated the viability and effectiveness of our load balancing framework.

All major components within PlUM have now been completely implemented and

integrated. This includes interfacing the parallel mesh adaption procedure based

on actual flow solutions to a data remapping module, and incorporating an efficient

parallel mesh repartitioner. An SP2 data remapping cost model is also proposed

that can accurately predict the total cost of data redistribution given the number of

tetrahedral elements that have to be moved among the processors.

Our load balancing procedure has five novel features: (i) a dual graph rep-

resentation of the initial computational mesh keeps the complexity and connectivity

constant during the course of an adaptive computation; (ii) a parallel mesh repar-

titioning algorithm avoids a potential serial bottleneck; (iii) a heuristic remapping

algorithm quickly assigns partitions to processors so that the redistribution cost

is minimized; (iv) an efficient data movement scheme allows remapping and mesh

subdivision at a significantly lower cost than previously reported; and (v) accurate

metrics estimate and compare the computational gain and the redistribution cost of

having a balanced workload after each mesh adaption step. Results show that our

parallel balancing strategy for adaptive unstructured meshes will remain viable on

large numbers of processors as none of the individual modules will be a bottleneck.
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3.1 Dual Graph of Initial Mesh

Parallel implementation of CFD flow solvers usually require a partitioning

of the computational mesh, such that each tetrahedral element belongs to an unique

partition. Communication is required across faces that are shared by adjacent ele-

ments residing on different processors. Hence for the purposes of partitioning, we

consider the dual of the computational mesh.

Using the dual graph representation of the initial mesh for the purpose of

dynamic load balancing is one of the key features of this work. The tetrahedral

elements of this mesh are the vertices of the dual graph. An edge exists between two

dual graph vertices if the corresponding elements share a face. A graph partitioning

of the dual thus yields an assignment of tetrahedra to processors. There is a signif-

icant advantage of using the dual of the initial computational mesh to perform the

repartitioning and remapping at each load balancing step of PI_IJM. This is because

the complexity remains unchanged during the course of an adaptive computation.

Each dual graph vertex has two weights associated with it. The compu-

tational weight, Wcomp, indicates the workload for the corresponding element. The

remapping weight, Wremap , indicates the cost of moving the element from one pro-

cessor to another. The weight Wcomp is set to the number of leaf elements in the

refinement tree because only those elements that have no children participate in the

flow computation. The weight Wremap, however, is set to the total number of elements

in the refinement tree because all descendants of the root element must move with it

from one partition to another if so required. Every edge of the dual graph also has

a weight Wcomm that models the runtime interprocessor communication. The value

of Wcomm is set to the number of faces in the computational mesh that corresponds

to the dual graph edge. The mesh connectivity, Wcomp, and W_omrn determine how

dual graph vertices should be grouped to form partitions that minimize both the
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disparity in the partition weightsandthe runtimecommunication.The Wremap de-

termines how partitions should be assigned to processors such that the cost of data

redistribution is minimized.

New computational grids obtained by adaption are translated to the weights

W¢omp and Wremap for every vertex and to the weight Wcomm for every edge in the

dual mesh. As a result, the repartitioning and load-balancing times depend only

on the initial problem size and the number of partitions, but not on the size of the

adapted mesh.

One minor disadvantage of using the initial dual grid is when the starting

computational mesh is either too large or too small. For extremely large initial

meshes, the partitioning time will be excessive. This problem can be circumvented by

agglomerating groups of elements into larger superelements. For very small meshes,

the quality of the partitions will usually be poor. One can then allow the initial

mesh to be adapted one or more times before forming the dual graph that is then

used for all future adaptions.

3.2 Preliminary Evaluation

Before embarking on an intensive load balancing phase, it is worthwhile esti-

mating if the impending mesh adaption is going to seriously imbalance the processor

workloads. The preliminary evaluation step achieves this goal by rapidly determin-

ing if the dual graph with a new set of Wcomp should be repartitioned. If projecting

the new values on the current partitions indicates that they are adequately load bal-

anced, there is no need to repartition the mesh. In that case, the flow computation

continues uninterrupted on the current partitions. If, on the other hand, the loads

are unbalanced, the mesh is repartitioned.

A proper metric is required to measure the load imbalance. If Wmax is the

sum of the _0comp on the most heavily-loaded processor, and Wavg is the average



44

loadacrossall processors,theaverageidle timefor eachprocessoris (Wmax - _?avg).

This is an exact measure of the load imbalance. The mesh is repartitioned if the

imbalance factor Wmax/lYavg is unacceptable.

3.3 Parallel Mesh Repartitioning

If the preliminary evaluation step determines that the dual graph with a

new weight distribution is unb_lanced_ the mesh needs to be repartitioned. Note

that repartitioning is always performed on the initial dual graph with the weights of

the vertices and edges adjusted to reflect a mesh adaption step. A good partit.ioner

should minimize the total execution time by balancing the computational loads and

reducing the interprocessor communication time. In addition, the repartitioning

phase must be performed very rapidly for our PLUM load balancing framework to

be viable. Serial partitioners are inherently inefficient since they do not scale in

either time or space with the number of processors. Additionally, a bottleneck is

created when all processors are required to send their portion of the grid to the host

responsible for performing the partitioning. The solution must then be scattered

back to all the processors before the load balancing can continue. A high quality

parallel partitioner is therefore necessary to alleviate these problems.

For the test cases in this chapter PMeTiS [41] was used as the reparti-

tioner. PMeTiS is a multilevel algorithm which has been shown to quickly produce

high quality partitions. It reduces the size of the graph by collapsing vertices and

edges using a heavy edge matching scheme, applies a greedy graph growing algorithm

for partitioning the coarsest graph, and then uncoarsens it back using a combina-

tion of boundary greedy and Kernighan-Lin refinement to construct a partitioning

for the original graph. A key feature of PMeTiS is the utilization of graph color-

ing to paraltelize both the coarsening and the uncoarsening phases. An additional

benefit of the algorithm is the potential reduction in remapping cost since parallel
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MeTiS,unlike the serialversion,canusethe previouspartition asthe initial guess

for the repartitioning. Resultsindicatethat this partitionercanbe effectivelyused

insidePl OM; however, any other partitioning algorithm can also be used as long as it

quickly delivers partitions that are reasonably balanced and require minimal commu-

nication. Extensive analysis of several other repartitioning strategies are presented

in Chapter 4.

3.4 Similarity Matrix Construction

Once new partitions are obtained, they must be mapped to processors such

that the redistribution cost is minimized. In general, the number of new partitions

is an integer multiple F of the number of processors. Each processor is then assigned

F unique partitions. The rationale behind allowing multiple partitions per processor

is that performing data mapping at a finer granularity reduces the volume of data

movement at the expense of partitioning and processor reassignment times. However,

the simpler scheme of setting F to unity suffices for most practical applications.

Quantitative effects of varying F for our test cases are shown in Section 3.8.
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P = 4and F= 2. Only theFigure 3.1. An example of a similarity matrix M for
non-zero entries are shown.

The first step toward processor reassignment is to compute a similarity

measure M that indicates how the remapping weights Wremap of the new partitions

are distributed over the processors. It is represented as a matrix where entry Mi,j
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is the sum of the Wremap of all the dual graph vertices in new partition j that al-

ready reside on processor i. Since the partitioning algorithm is run in parallel, each

processor can simultaneously compute one row of the matrix, based on the map-

ping between its current subdomain and the new partitioning. This information is

then gathered by a single host processor that builds the complete similarity matrix,

computes the new partition-to-processor mapping, and scatters the solution back to

the processors. Note that these gather and scatter operations require a minuscule

amount of time since only one row of the matrix (PxF integers) needs to be com-

municated to the host processor. A similarity matrix for P = 4 and F = 2 is shown

in Fig. 3.1. Only the non-zero entries are shown.

3.5 Processor Reassignment

The goal of the processor reassignment phase is to find a mapping between

partitions and processors such that the data redistribution cost is minimized. Various

cost functions are usually needed to solve this problem for different architectures.

We present three general metrics: TotalV and Max'/, and MaxSR which model the

remapping cost on most multiprocessor systems. TotalY minimizes the total volume

of data moved among all processors, MaxV minimizes the maximum flow of data to

or from any single processor, while MaxSR minimizes sum of the maximum flow of

data to and from any processor. A greedy heuristic algorithm is also presented.

3.5.1 TotalV metric

The TotalV metric assumes that by reducing network contention and the

total number of elements moved, the remapping time will be reduced. In general,

each processor cannot be assigned F unique partitions corresponding to their F

largest weights. To minimize TotalV, each processor i must be assigned F partitions
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j__.f, f = 1, 2,..., F, such that the objective function

P F

•it. = _ _ Mij,_, (3.1)
i=1 f=l

is maximized subject to the constraint

ji_r _ jk__, for i _ k or r _ s; i,k = l,2,...,P; r,s = l,2,...,F.

We can optimally solve this by mapping it to a network flow optimization

problem described as follows. Let G = (V, E) be an undirected graph. G is bipartite

if V can be partitioned into two sets A and B such that every edge has one vertex

in A and the other vertex in B. A matching is a subset of edges, no two of which

share a common vertex. A maximum-cardinality matching is one that contains as

many edges as possible. If G has a real-valued cost on each edge, we can consider

the problem of finding a maximum-cardinality matching whose total edge cost is

maximized. We refer to this as the maximally weighted bipartite graph (MWBG)

problem (also known as the assignment problem).

When F = 1, optimally solving the TotalV metric trivially reduces to

MWBG, where V consists of P processors and P partitions in each set. An edge

of weight Mij exists between vertex i of the first set and vertex j of the second

set. If F > 1, the processor reassignment problem can be reduced to MWBG by

duplicating each processor and all of its incident edges F times. Each set of the

bipartite graph then has PxF vertices. After the optimal solution is obtained, the

solutions for all F copies of a processor are combined to form a one-to-F mapping

between the processors and the partitions. The optimal solution for the TotalV

metric and the corresponding processor assignment of an example similarity matrix

is shown in Fig. 3.2(a).

The fastest MWBG algorithm can compute a matching in O(]Yl 2 log IV] +

IVIIEI) time [27], or in O(IVI1/21EI log(IYlC)) time if all edge costs are integers of

absolute value at most C [28]. We have implemented the optimal algorithm with a
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runtimeof O(IVI3). Since M is generally dense, IEI _ ]VI 2, implying that we should

not see a dramatic performance gain from a faster implementation.

3.5.2 MaxV metric

The metric MaxV, unlike TotalV, considers data redistribution in terms of

solving a load imbalance problem, where it is more important to minimize the work-

load of the most heavily-weig-hted processor than-to minimize the sum of all the

loads. During the process of remapping, each processor must pack and unpack send

and receive buffers, incur remote-memory latency time, and perform the compu-

tational overhead of rebuilding internal and shared data structures. By minimizing

max((_×max(ElemsSent), fl×max(ElemsRecd)), where (_ and fl are machine-specific

parameters, MaxV attempts to reduce the total remapping time by minimizing the

execution time of the most heavily-loaded processor. We can solve this optimally

by considering the problem of finding a maximum-cardinality matching whose maxi-

mum edge cost is minimum. We refer to this as the bottleneck maximum cardinality

matching (BMCM) problem.

To find the BMCM of the graph G corresponding to the similarity matrix,

I

we first need to transform _M into a new matrix M'. Each entry Mij represents the

maximum cost of sending data to or receiving data from processor i and partition j:

P P

Mi'j = max((¢_ Z M,y,y # j),(/_ _ Mzj,x # i)). (3.2)
y=l x=l

Currently, our framework for the MaxV metric is restricted to F = 1. We have im-

plemented the BMCM algorithm of Bhat [5] which combines a maximum cardinality

matching algorithm with a binary search, and runs in O(IV]l/2]E]loglVI). The

fastest known BMCM algorithm, proposed by Gabow and Tarjan [29], has a runtime

of O(([VI log IVI)I/_IEI).

The new processor assignment for the similarity matrix in Fig. 3.2 using

this approach with a =/3 = 1 is shown in Fig. 3.2(b). Notice that the total number
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New Partitions New Partitions

O

New Processors

TotalV moved = 525

MaxV moved = 275

MaxSR moved = 485

(a)

New Processors

TotalV moved -- 640

MaxV moved = 245

MaxSR moved = 475

(b)

New Partitions New Partitions

New Processors

TotalV moved = 570

MaxV moved = 255

MaxSR moved = 465

(c)

New Processors

TotalV moved = 550

MaxV moved = 260

MaxSR moved = 470

(d)

Figure 3.2. Various cost metrics of a similarity matrix M for P = 4 and F = 1 using

(a) optimal MWBG algorithm, (b) optimal BMCM algorithm, (c) optimal DBMCM

algorithm, and (d) our heuristic algorithm.



5O

of elementsmovedin Fig.3.2(b)is largerthan thecorrespondingvaluein Fig. 3.2(a);

however,the maximumnumberof elementsmovedis smaller.

3.5.3 MaxSR metric

Our third metric, MaxSR, is similar to MaxV in the sense that the overhead

of the bottleneck processor is minimized during the relnapping phase. MaxSR differs,

however, in that it minimizes the sum of the heaviest data flow from any processor

and to any processor, expressed as (axmax(ElemsSent) + flxmax(ElemsRecd)).

We refer to this as the double bottleneck maximum cardinality matching (DBMCM)

problem. The MaxSR formulation allows us to capture the computational overhead

of packing and unpacking data, when these two phases are separated by a barrier

synchronization. Additionally, the MaxSR metric may also approximate the many-to-

many communication pattern of our remapping phase. Since a processor can either

be sending or receiving data, the overhead of these two phases should be modeled

as a sum of costs.

We have developed an algorithm for computing the minimum MaxSR of the

graph G corresponding to our similarity matrix. We first transform M to a new

tl

matrix M". Each entry Mij contains a pair of values (Send, Receive) representing

the total cost of sending and receiving data, when processor i is mapped to partition

j:
P P

It

Mij = {Sij = (c_ E Miy, y _ j), Rij = (/3 E M:_j,x # i)}. (3.3)
y=l x----1

Currently, our algorithm for the _laxSR metric is restricted to F = 1.

Let al,a2,...,ak be the distinct Send values appearing in M", sorted in

increasing order. Thus, ai < o'i+l and k _< p2. Form the bipartite graph Gi =

(V, Ei), where V consists of processor vertices u = 1, 2,..., P and partition vertices

v = 1,2,...,P, and Ei contains edge (u,v) if S,,,, <_ ai; furthermore, edge (u,v) has

weight R,v if it is in Ei.
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For small values of i, graph Gi may not have a perfect matching. Let imin

be the smallest index such that Gimin has a perfect matching. Obviously, G; has a

perfect matching for all i >_ imln. Solving the BMCM problem of Gi gives a matching

that minimizes the maximum Receive edge weight. It gives a matching with MaxSR

value at most ai+ MaxV(Gi). Define

MaxSR(i) = min (aj + MaxV(Gj)). (3.4)
imin<_j<_i

It is easy to see that MaxSR(k) equals the correct value of MaxSR. Thus, our algorithm

computes MaxSR by solving k BMCM problems on the graphs Gi and computing the

minimum value MaxSR(k). However, we can prematurely terminate the algorithm

if there exists an im_x such that aim_x+l _> MaxSR(imax), since it is then guaranteed

that the MaxSR solution is NaxSR(imax).

Our implementation has a runtime of O(IVI1/2IEI 2 log [VI) since the BMCM

algorithm is called IE] times in the worst ease; however, it can be decreased to

O(IEI2). The following is a brief sketch of this more efficient implementation.

Suppose we have constructed a matching 34 that solves the BMCM problem

of Gi for i _ i_in. We solve the BMCM problem of Gi+l as follows. Initialize a

working graph G to be Gi+l with all edges of weight greater than Naxg(Gi) deleted.

Take the matching M on G, and delete all unmatched edges of weight MaxV(Gi).

Choose an edge (u, v) of maximum weight in 34. Remove edge (u, v) from 34

and G, and search for an augmenting path from u to v in G. If no such path

exists, we know that lqaxV(Gi) =l_axV(Gi+l). If an augmenting path is found, repeat

this procedure by choosing a new edge (u _, v _) of maximum weight in the matching

and searching for an augmenting path. After some number of repetitions of this

procedure, the maximum weight of a matched edge will have decreased to the desired

value MaxV(Gi+l). At this point our algorithm to solve the BMCM problem of Gi+l

will stop, since no augmenting path will be found.

This algorithm runs in total time O(IE[2). To see this, note that each
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searchfor anaugmentingpathusestime O(JEJ). The total number of such searches

is O(JEJ). This is because a successful search for an augmenting path for edge (u, v)

permanently eliminates this edge from all future graphs, so there are at most JEJ

successful searches. Furthermore, there are at most JEJ unsuccessful searches, one

for each value of i.

The new processor assignment for the similarity matrix in Fig. 3.2 using the

DBMCM algorithm with a = j3 = 1 is shown in Fig. 3.2(c). Notice that the MaxSR

solution is minimized; however, the number of TotalV elements moved is larger than

the corresponding value in Fig. 3.2(a), and more MaxV elements are moved than

in Fig. 3.2(b). Also note that the optimal similarity matrix solution for MaxSR is

provably no more than twice that of MaxV.

3.5.4 Heuristic Algorithm

We have developed a heuristic greedy algorithm that gives a suboptimal

solution to the TotalV metric in O(JEJ) steps. The pseudocode for our heuristic

algorithm is given in Fig. 3.3. Initially, all partitions are flagged as unassigned and

each processor has a counter set to F that indicates the remaining number of par-

titions it needs. The non-zero entries of the similarity matrix M are then sorted in

descending order. Starting from the largest entry, partitions are assigned to proces-

sors that have less than F partitions until done. If necessary, the zero entries in M

are also used. Applying this heuristic algorithm to the similarity matrix in Fig. 3.2

generates the new processor assignment shown in Fig. 3.2(d). We show that a pro-

cessor assignment obtained using the heuristic algorithm can never result in a data

movement cost that is more than twice that of the optimal TotalV assignment. Ad-

ditionally, experimental results in Section 3.8 demonstrate that our heuristic quickly

finds high quality solutions for all three metrics.
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for (j=O; j<npart; j++) part_map[j] = unassigned;

for (i=O; i<nproc; i++) proc_unmap[i] = npart / nproc;

generate list L of entries in S in descending order using radix sort;

count = O;

while (count < npart) {

find next entry M[i] [j] in L such that

proc_unmap[i] > 0 and part_map[j] = unassigned;

pro c_unmap [i] -- ;

part_map[j] = assigned;

count++;

map partition j to processor i;

Figure 3.3. Pseudocode for our heuristic algorithm for solving the processor reas-

signment problem.

Theorem 1: The value of the objective function .T using the heuristic

algorithm is always greater than half the optimal solution.

Proof: We prove by the method of induction. Let M_j denote the entry in

the i-th row and j-th column of a kxk similarity matrix. Let 0pt k and Heu k denote

the optimal and heuristic solutions, respectively, for the similarity matrix M k. When

k = 1, 0pt 1 = I-Ieu1 since there is only one entry in M 1 and must be chosen by both

algorithms. Thus, 2 Hou I _> 0pt 1.

Assume now that the theorem is true for some n > 1; that is, 2ttou '_ > 0pC _.

We need to show that 2 ttou n+l _> 0pt "+1.

Without loss of generality, create M "+1 from M '_ by adding a new row and

column such that _Arn+l > max t It,_n+l _rn+l _ for 1 < i < n. Therefore, by
_'_n+l,n+l -- ',_'_i,n+l ' ""n+l,i] -- --

a_n+l Since 2 Heu n >definition of the heuristic algorithm, lieu "+1 = Heu n + "-n+1,,_+1.

_ 9 /I/f n+l There are now two cases that can occur0pt n, we get 2Heu n+l > 0pt n q- .... nTl,nTl"

for the optimal solution.

h'c'n+l is contained in the optimal solution.Case 1 .... nTl,n+l

- A,fn+l which
A/tn+l Thus, 2Heu n+l > 0pt n+l . _'_n+l,n+l,This means 0pt n+l = 0ptn+ "'_n+l,n+l"

implies 2 lieu "+1 > 0pt n+l. []

_¢n+l is not contained in the optimal solution.Case 2 .... n+l,n+l
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Without loss of generality, assume that a_n+l and )l'fn+l_'_n,n+l ""n+l,n are contained in the

_/1'_+1 ta_+l By definitionoptimal solution. This means Opt _+1 = Op'cn-1 +-',_,n+l + --'n+l,n" .

_lAtnq-I 0ptn+l )bfn+l Since 0pt n > Opt n-I we haveof *'*n+l,n+l, we get _< Opt n-1 + 2 *'*n+l,n+l" -- ,

_ a/tn+_ Therefore, 2 _leu n+l > Opt "+_ []Opt n+l < Opt n or 2 *'*n+l,n+l" -- "

Corollary: A processor assignment obtained using the heuristic algorithm

can never result in a data movement cost that is more than twice that of the optimal

assignment.

Proof: We assume that the data movement cost is proportional to tile

number of elements that are moved and is given by _ _ M w - 9r. We need to show

M _that_ _Mn-Heun,,a -<2(_M_'-0pt'_);,,3 that is,_ _,j-20pt_+Heu __> 0.

Let Int k be the sum of the similarity matrix entries that are contained

M,_in both 0pt k and Heu k. Therefore, _ i,j -> 0P tn + Heun - Int_. This implies

_ M_j - 2 0pt" + Heu n 3, 2 Heu n - 0pt n - Int n. By Theorem 1, 2 (Heu n - In1; n) >__

(Opt _ - Int_), since (Heu _ - Int n) and (Opt '_- In% _) are the heuristic and optima!

solutions for a similarity matrix M k C M _. t:]

Recall that To_calV does not consider the execution times of bottleneck

processors while MaxV and RaxSR ignore bandwidth contention. A quantitative com-

parison of all three metrics is presented in Section 3.8. In general, the objective

function may need to use a combination of metrics to effectively incorporate all

related costs.

3.6 Cost Calculation

Once the reassignment problem is solved, a model is needed to quickly pre-

dict the expected redistribution cost for a given architecture. Accurately estimating
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this time is very difficult due to the large number and complexity of the costs in-

volved in the remapping procedure. The computational overhead includes rebuilding

internal data structures and updating shared boundary information. Predicting the

latter cost is particularly challenging since it is a function of the old and new parti-

tion boundaries. The communication overhead is architecture-dependent and can be

difficult to predict especially for the many-to-many collective communication pattern

used by the remapper.

Our redistribution algorithm consists of three major steps: first, the data

objects moving out of a partition are stripped out and placed in a buffer; next,

a collective communication appropriately distributes the data to its destination;

and finally, the received data is integrated into each partition and the boundary

information is consistently updated. Performing the remapping in this bulk fashion,

as opposed to sending individual small messages, has several advantages including the

amortization of message start up costs and good cache performance. Additionally,

the total time can be modeled by examining each of the three steps individually since

the two computational phases are separated by the implicit barrier synchronization of

the collective communication. The computation time can therefore be approximated

as:

a X max(ElomsSont) -b_ × max(ElomsRocd) + 6, (3.5)

where a and ]_ represent the time necessary to strip out and insert an element

respectively,and _ is the additional cost of processing boundary information. The

maximum values ofElomsSont and ElomsRecd can be quickly derived from the solved

similarity matrix. Since the value of 6 is difficult to predict exactly and constitutes

a relatively small part of the computation, we assume that it is a small constant. To

simplify our model even further, we assume that a = ft.

A significant amount of work has been done to model communication over-

head including LogP [19], LogGP [1], and BSP [66]. All three models make the
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following assumptions which hold true for most current architectures: a receiving

processor may access a message or parts of it only after the entire message has

arrived; and, at any given time a processor can either be sending or receiving a

single message (also known as a single port model). Note that these models do

not account for network contention (hotspots), since they are extremely difficult to

capture. Finally, BSP and LogGP arrive at similar cost metrics for bulk collective

communication. Our redistribution procedure closely follows the superstep model of

BSP.

All reported results in this chapter were performed on the wide-node IBM

SP2 located at NASA Ames Research Center. Portability onto the Origin2000 is

addressed in Chapter 4. The SP2 consists of RS6000/590 processors, which are

connected through a high performance switch, call the Vulcan chip. Each chip con-

nects up to eight processors, and eight Vulcan chips comprise a switching board.

An advantage of this interconnection mechanism is that all nodes can be considered

equidistant from one another. This allows us to predict the communication over head

without the need to model multiple hops for individual messages. We approximate

our communication cost for the.SP2 as:

g × max(ElemsSent) + g × max(ElomsRecd) + l, (3.6)

where g is a machine-specific cost of moving a single element and l is the time for

barrier synchronization.

The total expected time for the redistribution procedure can therefore be

expressed as:

7 x MaxSR + O, (3.7)

where MaxSR = max(ElemsSent) + max(ElemsRecd), 7 = _ + g, and O = 6 + I.

Eqn. 3.7demonstrates preciselywhy we need to model the MaxSR metric when per-

forming processorreassignment.By minimizing MaxSR we can guaranteea reduction
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in the computational overhead of our remapping algorithm. Since the computational

workload is architecture independent, we are effectively solving two load balanc-

ing problems partitioned by a collective communication. Additionally, by reducing

MaxSR we can achieve a savings in communication overhead on many bandwidth rich

systems. Most modern architectures are restricted to a single port model, where

each processor can either be sending or receiving a single message. The many-to-

many communication pattern of remapping can therefore be approximated as a load

balance problem, represented by l_axSR.

In order to compute the slope and intercept of the linear function in Eqn. 3.7,

several data points need to be generated for various redistribution patterns and their

corresponding run times. A simple least squares fit can then be used to approximate

3' and O. This procedure needs to be performed only once for each architecture,

and the values of 3' and O can then be used in actual computations to estimate the

redistribution cost.

The computational gain due to repartitioning is proportional to the decrease

in the load imbalance achieved by running the adapted mesh on the new partitions

old new
rather than on the old partitions. It can be expressed as TiterNadapt(W_a x - Wmn'ax),

where _/iter is the time required to run one solver iteration on one element of the

original mesh, Nadapt is the number of solver iterations between mesh adaptions,

newand W °ld and W_a x are the sum of the Wcomp on the most heavily-loaded processor• • nlax

for the old and new partitioning, respectively. The new partitioning and processor

reassignment are accepted if the computational gain is larger than the redistribution

cost. The numerical simulation is then interrupted to properly redistribute all the

data.



58

3.7 Data tLemapping

The remappingphaseis responsiblefor physicallymovingdata whenit

is reassignedto a differentprocessor.It is generallythe most expensivephaseof

any loadbalancingstrategy.This datamovementtime canbesignificantlyreduced

by consideringtwo distinct phasesof meshrefinement:marking and subdivision.

During the markingphase,edgesare chosenfor bisectioneither basedon an error

indicatoror dueto the propagationneededfor valid meshconnectivity[12]. This

is essentiallya bookkeepingstepduring whichthe grid remainsunchanged.The

subdivisionphaseis theprocessof actuallybisectingedgesandcreatingnewvertices

andelementsbasedon the generatededge-markingpatterns.During this phase,the

data volumecorrespondingto the grid growssincenewmeshobjectsarecreated.

An extensiveanalysisof themeshadaptionprocedureis presentedin Chapter2.

A keyobservationis that data remappingfor a refinementstepshouldbe

performedafter the markingphasebut beforethe actualsubdivision.Becausethe

refinementpatternsaredeterminedduringthemarkingphase,theweightsofthedual

graphcanbeadjustedasthoughsubdivisionhasalreadytakenplace.Basedon the

updateddual graph,the loadbaJancerproceedsin generatinga newpartitioning,

computingthe newprocessorassignments,and performingthe remappingon the

originalunrefinedgrid. Sinceasmallervolumeof datais movedusingthis technique,

a potentially significantcostsavingsis achieved.The newlyredistributedmeshis

thensubdividedbasedon the markingpatterns.This is the strategythat is usedin

PLUM (cf. Fig. 1.1).

As described in Section 2.4, an additional performance benefit is obtained

as a side effect of this strategy. Since the original mesh is redistributed so that mesh

refinement creates approximately the same number of elements in each partition, the

subdivision phase performs in a more load balanced fashion. This reduces the total

mesh refinement time. The savings should thus be incorporated as an additional term
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in the computationalgainexpressiondescribedin theprevioussubsection.Thenew

partitioningand mappingareacceptedif the computationalgain is largerthan the

redistributioncost:

T N /1xrold new ( _/-new
iter e_:laptl, rVma x -- _zV_a x ) -_ Trefine "" max\ Wold

"" max
1) > 3' x _laxSR + O, (3.8)

where Trefme is the time required to perform the subdivision phase based on the

edge-marking patterns.

3.8 Experimental results

PLUM was originally implemented on the IBM SP2 distributed-memory

multiprocessor located at NASA Ames Research Center. The code is written in

C++, with the parallel activities in MPI for portability. Note that no SP2-specific

optimizations were used to obtain the performance results reported in this chapter. A

portability analysis of PLUM on the SGI/Cray Origin2000 is presented in Chapter 4.

Table 3.1: Grid sizes for the three different refinement strategies

Vertices Elements Edges

Initial Mesh 13,967 60,968 78,343

REAL_I 17,880 82,489 104,209

REAL_2 39,332 201,780 247,115

REAL_3 61,161 321,841 391,233

The computational mesh used for the experiments in this chapter is the

one used to simulate the acoustics wind-tunnel test of Purcell [54]. In the first set

of experiments, only one level of adaption is performed with varying fractions of the

mesh in Fig. 2.7 being targeted for refinement. These cases, denoted as REAL_IR,

REAL_2R, and REAL_3R, were used during the parallel mesh adaption analysis of

Sec. 2.4. Recall that for these strategies, edges are targeted for subdivision based

on an error indicator [52] calculated directly from the flow solution. For clarity,

Table 3.1 lists the grid sizes for this single level of refinement for each of the three

cases. Note that the same information can be derived from Table 2.1
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Figure 3.4. Speedup of the 3D_TAG parallel mesh adaption code when data is

remapped either after or before mesh refinement.

Figure 3.4 illustrates the parallel speedup curves for each of the three edge-

marking strategies, previously presented in Tables 2.3 and 2.4. Two sets of results

are presented: one when data remapping is performed after mesh refinement, and

the other when remapping is performed before refinement. An extensive analysis of

this data is presented in Section 2.4.

Figure 3.5 shows the remapping time for each of the three cases. As in

Fig. 3.4, results are presented when the data remapping is done both after and before

the actual mesh subdivision. A significant reduction in remapping time is observed

when the adapted mesh is load balanced by performing data movement prior to actual

subdivision. This is because the mesh grows in size only after tile data has been

redistributed. The biggest improvement is seen for REAL_3R when the remapping

time is reduced to less than a third from 3.71 secs to 1.03 secs on 64 processors.

These results in Figs. 3.4 and 3.5 demonstrate that our methodology within PLUM

is effective in significantly reducing the data remapping time and improving the

parallel performance of mesh refinement.

Figure 3.6 compares the execution times and the amount of data movement

for the REAL_2R strategy when using the optimal and heuristic MWBG processor
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Figure 3.5. Remapping times within PI_IJM when data is remapped either after or
before mesh refinement.

assignment algorithms. Both algorithms use the ToZalV metric. Four pairs of curves

are shown in each plot for F = 1, 2, 4, and 8. The optimal method always re-

quires almost two orders of magnitude more time than our heuristic method. The

execution times also increase significantly as F is increased because the size of the

similarity matrix grows with F. However, the volume of data movement decreases

with increasing F. This confirms our earlier claim that data movement can be re-

duced by mapping at a finer granularity. The relative reduction in data movement,

however, is not very significant for our test cases. The results in Fig. 3.6 illustrate

that our heuristic mapper is almost as good as the optimal algorithm while requir-

ing significantly less time. Similar results were obtained for the other edge-marking

strategies.

Table 3.2 presents a comparison of our five different processor reassignment

strategies in terms of processor reassignment time and the amount of data movement.

Results are shown for the REAL_2R strategy on the SP2 with F = 1. The first row

shows the default assignment generated by the PMeTiS [41] partitioner, while the

remaining strategies refer to our reassignment algorithms described in Section 3.5.

The PMeTiS case does not require any explicit processor reassignment since
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Figure 3.6. Comparison of the optimal and heuristic MWBG remappers in terms

of the execution time (top) and the volume of data movement (bottom) for the

REAL_2R strategy.
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Table3.2. Comparisonof fiveprocessorreassignmentalgorithmsfor the Real_2R case

on the SP2 with F = 1.

Algthm.

To_alV

Metric

PMeTiS 42680

Heuristic 30071

MWBG 30071

BMCM 35506

P = 8

MaxV I MaxSRMetric Metric

9597 13359

8169 11167

8169 11162

8169 11512

8250 11010DBMCM 33862

Reass. TotalVTime Metric

0.0000 53242

0.0002 36520

0.0013 35096

0.0019 50488

0.0167 53012

P=16

Metric Metric Time

8012 11222 0.0000

7131 9294 0.0005

7131 9230 0.0045

7131 9377 0.0070

7134 9123 0.0614

P = 32

TotalV I MaxV IMaxSRAlgthm. Metric Metric Metric

PMeTiS 58297 5067 7467

Heuristic 35032 4410 5809

MWBG 34738 4410 5822

BMCM 49611 4410 5944

DBMCM 50270 4414 5733

I Reass. TotalVTime Metric

0.0000 67439

0.0017 38283

0.0177 38059

0.0323 52837

0.0921 54896

P=64

I MaxV MaxSR Reass.Metric Metric Time

2667 4452 0.0000

2261 3123 0.0088

2261 3142 0.0650

2261 3282 0.1327

2261 3121 1.2515

we choose the default partition-to-processor mapping given by the partitioner. How-

ever, it shows extremely poor performance for all three metrics. This is expected

since PMeTiS is a global partitioner that does not attempt to minimize the remap-

ping overhead. An extensive comparison of PMeTiS with other global and diffusive

partitioners is given in Section 4.2.1

The execution times of the other four algorithms increase with the num-

ber of processors because the growth in the size of similarity matrix; however, the

heuristic time for 64 processors is still very small and acceptable. The total volume

of data movement is obviously smallest for the MWBG algorithm since it optimally

solves for the TotalV metric. In the optimal BMCM method, the maximum of the

number of elements sent or received is explicitly minimized, but almost all the other

algorithmic solutions give the identical result. There were some differences in the
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maximumnumberofelementsreceivedamongthethreemethods;however,themax-

imum numberof elementssentwasconsistentlylargerand theseare consequently

reported. In our helicoptorrotor experiment,smallregionsof the domainincur a

dramaticincreasein grid pointsbetweenrefinementlevels.Thesenewlyrefinedre-

gionsmustshift a largenumberof elementsontootherprocessorsin orderto achieve

a balancedloaddistribution. Therefore,a similarMaxV solution should be obtained

by any reasonable reassignment algorithm.

The DBMCM algorithm optimally reduces MaxSR metric, but achieves no

more than a 5% improvement over the other algorithms. Nonetheless, since we

believe that the MaxSR metric can closely approximate the remapping cost on many

architecture, computing its optimal solution can provide useful information. Notice

that the minimum Total'/ increases slightly as P grows from 8 to 64, while the

MaxSR is dramatically reduced by over 70%. This trend continues as the number of

processors increase. These results indicates that the our load balancing algorithm

will remain viable on a large number of processor, since the per processor work load

decreases as P increases.

Finally, observe that the heuristic algorithm does an excellent job in min-

imizing all three cost metrics, in a trivial amount of time. Although theoretical

bounds have only been established for the TotalV metric, empirical evidence in-

dicates that the heuristic algorithm closely approximates both MaxV and MaxSR. It

was therefore used to perform the processor reassignment for all the experiments

reported in this paper.

Figure 3.7 shows how the execution time is spent during the refinement and

the subsequent load balancing phases for the three different cases. The reassignment

times are not shown since they are negligible compared to the other times and are

very similar to those listed in Table 3.2 for all the three cases. The repartitioning

curves, using PMeTiS [41], are almost identical for the three c_es because the time to
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repartitionmostlydependson theinitial problemsize.Noticethat therepartitioning

times arealmost independentof the numberof processors;however,for our test

mesh,thereis a minimumwhenthe numberof processorsis about 16. This is not

unexpected.When there are too few processors,repartitioningtakesmore time

becauseeachprocessorhasa biggershareof the total work. When there are too

many processors, an increase in the communication cost slows down the repartitioner.

For a larger initial mesh, the minimum partitioning time will occur for a higher

number of processors. For REAL_2R, the PMeTiS partitioner required 0.58 secs to

generate 64 partitions on 64 processors. The remapping times gradually decrease

as the number of processors is increased. This is because even though the total

volume of data movement increases with the number of processors, there are actually

more processors to share the work. Notice that the refinement, repartitioning, and

remapping times are generally comparable when using more than 32 processors. For

example, the refinement and remapping phases required 0.55 secs and 0.89 secs,

respectively, on 64 processors for REAL_2R.

We also investigate the maximum and the actual impact of load balancing

using PlUM on flow solver execution times. Suppose that P processors are used to

solve a problem on a tetrahedral mesh consisting of N elements. In a load balanced

configuration, each processor has NIP elements assigned to it. The computational

mesh is then refined to generate a total of _N elements, 1 _< G _< 8 for our refine-

ment procedure. If the workload were balanced, each processor would have GN/P

elements. But in the worst case, all the elements on a subset of processors are isotrop-

ically refined 14o-8, while elements on the remaining processors remain unchanged.

The most heavily-loaded processor would then have the smaller of 8N/P and GN-

(P-1)N/P elements. Thus, the maximum improvement due to load balancing for a

single refinement step would be:

1

min (8,P(G- I)+ i) (3.9)
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The maximumimpactof loadbalancingfor the threestrategiesareshown

ill the top half of Fig. 3.8. The meshgrowthfactorG is 1.35for the REAL_IRcase,

givingamaximumimprovementof 5.91with loadbalancingwhenP _ 20. The value

of G is 3.31 and 5.28 for REAL_2R and REAL_3R, so the maximum improvements

are 2.42 (for P _ 4) and 1.52 (for P _> 2), respectively. There is obviously no im-

provement with load balancing if G = 1 or G = 8. Notice that maximum imbalance

is attained faster as G increases; however, the magnitude of the maximum imbalance

gradually decreases. The actual impact of load balancing is shown in the bottom

half of Fig. 3.8. The three curves demonstrate the same basic nature as those for

maximum imbalance. The improvement due to load balancing on 64 processors is a

factor of 3.46, 2.03, and 1.52, for REAL_IR, REAL_2R, and REAL_3R, respectively.

The impact of load balancing for these cases is somewhat less significant than the

maximum possible since they model actual solution-based adaptions that do not nec-

essarily cause worst case scenarios. Note, however, that the maximum improvement

is already attained for REAL_3R. The REAL_IR and REAL_2R strategies would also

attain their respective maxima if more processors were used. It is important to real-

ize that the results shown in Fig. 3.8 are for a single refinement step. With repeated

refinement, the gains realized with load balancing may be even more significant.

Table 3.3. Progression of Grid Size through a Sequence of Three Levels of Adaption

Vertices Elements Edges Bdy Faces

Initial Mesh 13,967 60,968 78,343 6,818

Level 1 35,219 179,355 220,077 11,008

Level 2 72,123 389,947 469,607 15,076

Level 3 137,474 765,855 913,412 20,168

In the second set of experiments, a total of three levels of adaption are

performed in sequence on the mesh shown in Fig. 2.7. Table 3.3 shows the size of

the computational mesh after each adaption step. Notice that the final mesh is more
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thananorderof magnitudelargerthan theinitial mesh.A close-upof thefinal mesh

andpressurecontoursin the helicopterrotor planeareshownin Fig. 3.9. Themesh

has been refined to adequately resolve the leading edge compression and capture

both the surface shock and the resulting acoustic wave that propagates to the far

field.

Figure 3.9. Final adapted mesh and computed pressure contours in the plane of the
helicopter rotor.

Figure 3.10 shows how the execution time is spent during the adaption

and the subsequent load balancing phases for the three levels. The reassignment

times are not shown since they are several orders of magnitude smaller than the

other times. The repartitioning curves, using PMeTiS [41], are almost identical to

those shown in Fig. 3.7. Slight perturbations in the repartitioning times are due to

different weight distributions of the dual graph. The mesh adaption times increase

with the size of the mesh; however, they consistently show an efficiency of about

85% on 64 processors for all three levels. In fact, the efficiency increases with the

mesh size because of a larger computation-to-communication ratio. The remapping

time increases from one adaption level to the next because of the growth in the mesh

size. More importantly, the remapping times always dominate and are generally
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about four timesthe adaptiontime on 64 processors. This is not unexpected since

remapping is considered the bottleneck in dynamic load balancing problems. It is

exactly for this reason that the remapping cost needs to be predicted accurately to

be certain that the data redistribution cost will be more than compensated by the

computational gain.

The third set of experiments are performed to compute the slope "y and

the intercept O of our SP2 redistribution cost model derived in Eqn. 3.7. Empir-

ical data is gathered by running various redistribution patterns. Data points are

generated by permuting all possible combinations of the following four parameters:

number of processors P (8,16,32,64), mesh growth factor _ (1.4,3.3,5.3), remapping

order (before refinement, after refinement), and similarity matrix solution (default,

heuristic). This produces 48 redistribution times which are then plotted against two

metrics, TotalV and MaxSR, in Fig. 3.11. Results demonstrate that there is little

obvious correlation between the total number of elements moved (TotalV metric)

and the expected run time for the remapping procedure. On the other hand, there is

a clear linear correlation between the maximum number of elements moved (MaxSR

metric) and the actual redistribution time. There are some perturbations in the

plots resulting from factors such as network hotspots and shared data irregularities,

but the overall results indicate that our redistribution model successfully estimates

the data remapping time. This important result indicates that on the SP2 reducing

the bottleneck, rather than the aggregate, overhead guarantees a reduction in the

redistribution time.
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CHAPTER4

PORTABILITY AND REPARTITIONING ANALYSIS

In this chapter, several experimental results verify the effectiveness of P LUM

on sequences dynamically adapted, unstructured grids. We examine portability by

comparing results between the distributed-memory system of the IBM SP2, and

the Scalable Shared-memory MultiProcessing (S2MP) architecture of the SGI/Cray

Origin2000. Additionally, we evaluate the performance of five state-of-the-art parti-

tioning algorithms that can be used within PLUM. Results indicate that for certain

classes of unsteady adaption, globally repartitioning the computational mesh pro-

duces higher quality results than diffusive repartitioning schemes. We also demon-

strate that a coarse starting mesh produces high quality load balancing, at a fraction

of the cost required for a fine initial mesh. Finally, we show that the data redistri-

bution overhead can be significantly reduced by applying our heuristic processor

reassignment algorithm to the default partition-to-processor mapping given by par-

titioners.

4.1 Helicopter rotor test case

We present a portability analysis by comparing the SP2 results from sec-

tion 3.8 with Origin2000 performance. The tetrahedral mesh described in Fig. 2.7 is

targeted for one level of refinement, based on the three different marking strategies

REAL_IR, REAL_2R, and REAL_3R (cf. Table 3.1).

All experiments were performed on a wide-node IBM SP2 and a SGI/Cray

Origin2000. Note that no architecture-specific optimizations were used to obtain the

performance results reported in this chapter. The SP2 is located in the Numerical
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AerospaceSimulationdivisionat NASA AmesResearchCenter.An overviewof its

architecturewaspresentedin Section3.6.

The Origin2000usedin theseexperimentsisa 32-processorR10000system,

locatedat NCSA,Universityof Illinois. The Origin2000is the first commercially-

available64-bit cache-coherentnonuniformmemoryaccess(CC-NUMA)system.A

smallhighperformanceswitchconnectstwoCPUs,memory,andI/O. This module,

calledanode,is thenconnectedto othernodesin a hypercubefashion.An advantage

of this interconnectionsystemis that additionalnodesandswitchescanbe added

to createlargersystemsthat scalewith the numberof processors.Unfortunately,

this configurationcausesan increasein complexitywhenpredictingcommunication

overhead,sinceanaccuratecostmodelmust considerthe numberof modulehops,

if any,betweencommunicatingprocessors.

4.1.1 PLUM on the Origin2000

Figure4.1illustratestheparallelspeedupforeachof thethreeedge-marking

strategieson theOrigin2000.Similarto theSP2experiment(cf.Fig. 3.4),twosetsof

resultsarepresented:onewhendataremappingisperformedaftermeshrefinement,

andtheotherwhenremappingisperformedbeforerefinement.Speedupnumberson

theOrigin2000arealmostidenticalto thoseon the SP2.The ReaI_3Rcaseshowsthe

bestspeedupperformancebecauseit is themostcomputationintensive.Remapping

the databeforerefinementhasthelargestrelativeeffectfor Real_lR,becauseit has

the smallestrefinementregionand load balancingthe refinedmeshbeforeactual

subdivisionreturns the biggestbenefit. The resultsare the best for Real_3Rwith

data remappingbeforerefinement,showingan efficiencyof morethan 87%on 32

processorsof both the SP2andthe Origin2000.Extensiveperformanceanalysisof

the parallelmeshadaptioncodeon the SP2arepresentedin Section2.4.

To comparetheperformanceon theSP2andtheOrigin2000morecritically,
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Figure 4.1. Speedup of 3D_TAG the Origin2000 when data is remapped either after
or before mesh refinement.

one needs to look at the actual mesh adaption times rather than the speedup values.

These results are presented in Table 4.1 for the case when data is remapped before

the mesh refinement phase. Notice that the Origin2000 is consistently more than

twice as fast as the SP2. One reason is the faster clock speed of the Origin2000.

Another reason is that the mesh adaption code does not use the floating-point units

on the SP2, thereby adversely affecting its overall performance.

Figure 4.2 shows the remapping time for each of the three cases on the

Origin2000. As in the SP2 experiment (cf. Fig. 3.5), results are presented both when

the data remapping is done after and before the mesh subdivision. Once again,

a significant reduction in remapping time is observed when the adapted mesh is

load balanced by performing data movement prior to refinement. This is because a

smaller volume of data is moved, since mesh refinement occurs after redistribution.

Additionally, the remapping times decrease as the number of processors is increased.

This is consistent with SP2 results. As more processors share the work, each one

needs to process fewer elements. The remapping times when data is moved before

mesh refinement axe reproduced for both systems in Table 4.2.
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Table4.1. Executiontimeof 3D_TAG on the SP2 and tile Origin2000 when data is

remapped before mesh refinement

Real_lR

P SP2 102000

1 5.902 2.507

2 3.312 1.427

4 1.981 0.839

8 1.372 0.578

16 0.708 0.321

32 0.425 0.193

64 0.247

Real_2R

SP2 02000

23.780 10.468

12.060 5.261

6.734 2.880

3.434 1.470

1.846 0.794

1.061 0.458

0.550

Real_3R
SP2 02000

41.702 18.307

21.593 9.422

10.977 4.736

5.682 2.492

2.903 1.296

1.490 0.651

0.794

Perhaps the most remarkable feature of these results is the dramatic re-

duction in remapping times when using all 32 processors on the Origin2000. This is

probably because network contention with other jobs is essentially removed when us-

ing the entire machine. One may see similar behavior on an SP2 if all the processors

in a system configuration are used.

Notice that when using up to 16 processors, the remapping times on the

SP2 and the Origin2000 are comparable. Recall that the remapping phase within

PLUM consists of both communication (to physically move data around) and com-

putation (to rebuild the internal and shared data structures on each processor). We

cannot report these times separately as that would require introducing several barrier

synchronizations. However, since the results in Table 4.1 indicate that computation

is faster on the Origin2000, it is reasonable to infer that bulk communication is

faster on the SP2. Additional experimentation is required to verify these claims. In

any case, the results in Figs. 4.1 and 4.2 demonstrate that our methodology within

PLUM is effective in significantly reducing the data remapping time and improving

the parallel performance of mesh refinement.

Figure 4.3 shows how the execution time is spent during the refinement and

the subsequent load balancing phases for the three different cases on the Origin2000.
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As in the SP2 results of Figure 3.7, the processor reassignment times are not shown

since they are negligible compared to the other times. Note that the Origin2000

shows a qualitative behavior similar to the SP2. For all three subdivision strategies,

the major components of PLUM require approximately the same amount of time

when using 32 processors. These results show that PLUM can be successfully ported

to different platforms without any code modifications.

4.1.2 The redistribution cost model on the Origin2000

It is important to note from the results in Fig. 4.3 and Fig. 3.7 that the

refinement, repartitioning, and remapping times are generally comparable for the test

mesh when using a large number of processors (P _> 32). However, the remapping

time will increase significantly when the mesh grows in size due to adaption. Thus,

remapping is considered the bottleneck within the PLUM system. We therefore need

a cost model which compares the predicted redistribution cost versus the expected

computation gain of a balanced work load.

In the next set of experiments we attempt to map the SP2 redistribution

cost model (cf. Sec 3.6) onto the Origin2000. Experimental data is gathered by
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Table 4.2. Remapping time within PLUM on the SP2 and the Origin2000 when data
is redistributed before mesh refinement

Real_lR I Real_2R Real_3R

P SP2 102000 [ SP2 102000 ;P2 102000

2 2.601 3.259 5.273 4.940 3.679 3.675

4 2.813 2.679 3.440 3.005 3.003 2.786

8 2.982 2.876 3.321 2.963 3.351 2.786

16 1.821 1.392 2.173 2.346 2.049 2.353

32 1.012 0.377 1.338 0.491 1.260 0.435

64 0.709 0.890 1.031

running various redistribution patterns in order to compute the slope 7 and the in-

tercept O of Eqn. 3.7. The remapping times are then plotted against two metrics,

TotalV and MaxSR, in Fig. 4.4. Recall Fig. 3.11 which demonstrated that our SP2

redistribution cost model successfully estimates the data remapping time. Addition-

ally, we showed that reducing the bottleneck overhead on the SP2, results in a lower

remapping overhead.

The situation is quite different on the Origin2000. Remapping times were

extremely unpredictable for P < 32; hence, they are not shown in Fig. 4A. Ob-

serve that, for P = 32, the MaxSR metric is not significantly better than TotalV.

Furthermore, the SaxSR metric is also not as good as on the SP2. These results

indicate that network contention and a complex architecture (multiple hops between

processors) are probably major factors. Additional experimentation is required on

the Origin2000 to develop a more reliable remapping cost model.

4.2 Unsteady simulation test case

The final set of experiments is performed to evaluate the efficacy of PLUM

in an unsteady environment where the adapted region is strongly time-dependent.

To achieve this goal, a simulated shock wave is propagated through the initial mesh

shown at the top of Fig. 4.5. The test case is generated by refining all elements within
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a cylindricalvolumemovingleft to right acrossthe domainwith constantvelocity,

whilecoarseningpreviously-refinedelementsin its wake.Theperformanceof PlUM

is thenmeasuredat ninesuccessiveadaptionlevels.Notethat becausetheseresults

arederiveddirectlyfrom thedualgraph,meshadaptiontimesarenot reported,and

remappingoverheadsarecomputedusingour redistributioncostmodel.

Figure 4.5. Initial and adaptedmeshes(after levels1 and 5) for the simulated
unsteadyexperiment.

Figure4.6showstheprogressionof grid sizes for the nine levels of adaption

in the unsteady simulation. Both coarse and fine meshes, called Sequence_l and

Sequence_2 respectively, are used in the experiment to investigate the relationship

between load balancing performance and dual graph size. The coarse initial mesh,

shown in Fig. 4.5, contains 50,000 tetrahedral elements. The mesh after the first and

fifth adaptions for Sequence_l are also shown in Fig. 4.5. The initial fine mesh is

eight times the size of this coarse mesh. Note that even though the size of the meshes

remain fairly constant after four levels of adaption, the refinement region continues

to move steadily across the domain. The growth in size due to refinement is almost

exactly compensated by mesh coarsening. A third scenario, called Sequence_3, was
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also tested on the coarse initial mesh. This case was generated by reducing the

velocity of the cylindrical volume moving across the domain. Notice that the mesh

then continues to grow in size throughout the course of adaption. The final meshes

after nine adaption levels contain more than 1.8, 12.5, and 6.3 million elements for

Sequence_l, Sequence_2, and Sequence_3, respectively.

4.2.1 Comparison of partitioners

Recall that a good partitioning scheme is a critical component of our frame-

work. Since PLIJ M can use any general partitioner, we investigate the relative perfor-

mance of five parallel, state-of-the-art algorithms: PMeTiS, UAMeTiS, DAMeTiS,

Jostle-MD, and Jostle-MS.

Table 4.3 presents the partitioning times for Sequence_l using these five dif-

ferent partitioners briefly described in Section 1.2.4. PMeTiS is the parallel multilevel

k-way partitioning scheme of Karypis and Kumar [41], UAMeTiS and DAMeTiS are

multilevel undirected and directed repartitioning algorithms of Schloegel, Karypis,

and Kumar [62], and Jostle-MS and Jostle-MD are multilevel-static and multilevel-

dynamic configurations of the Jostle partitioner of Walshaw, Cross, and Everett [72].
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Average results 1 show that UAMeTiS is the fastest among all five partitioners, while

Jostle-MS is the slowest. PMeTiS is about 40% slower than UAMeTiS, but almost

six times faster than Jostle-MS.

Table 4.3. Partitioning time on the SP2 for P=64 using a variety of partitioners for

Sequence_l

IL
1

2

3

4

5

6

7

8

9

IA

[ PMeTiS UAMeTiS DAMeTiS Jostle-MS Jostle-MD

0.52 0.34 0.42 2.20 2.20

0.63 0.40 0.51 2.93 2.97

0.68 0.55 0.68 4.28 4.36

0.89 0.66 0.67 5.52 5.38

1.00 0.83 0.82 7.47 5.57

1.07 0.61 0.80 6.01 5.60

1.02 0.58 0.74 6.16 6.66

0.89 0.65 0.96 4.92 6.13

1.02 0.89 1.05 5.47 5.41

I 0.86 0.61 0.74 5.00 4.92

But partitioning time alone is not sufficient to rate the performance of a

mesh partitioner; one needs to investigate the quality of load balancing as well. We

define load balancing quality in two ways: the computational load imbalance factor 2

and the percentage of cut edges. These values are presented for all five partitioners

both before and after they are invoked for Sequence_l in Tables 4.4 and 4.5. PMeTiS

does an excellent job of consistently reducing the load imbalance factor to within 6%

of ideal (cf. Table 4.4). The Jostle partitioners are only slightly worse than PMeTiS,

and turn in acceptable performances. UAMeTiS and DAMeTiS, on the other hand,

show load imbalance factors larger than two. We do not know why this happens;

however, a poor load imbalance factor after repartitioning at any given adaption

level is one reason for a higher load imbalance factor before repartitioning at the

next adaption level.

1The last row in Tables 4.3-4.10 is marked with an A. It represents the average results over all

nine levels of adaption.

2The load imbalance factor is the ratio of the sum of the W¢omp on the most heavily-loaded

processor to the average load across all processors.
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Table 4.4. Load imbalance factor before and after mesh partitioning for P=64 using

a variety of partitioners for Sequence_l

PMeTiS UAMeTiS DAMeTiS Jostle-MS Jostle-MD

L Bef Aft Bef Aft Bef Aft Bef I Aft Bef[ Aft

1 3.58 1.03 3.58 2.32 3.58 2.46 3.58 1.02 3.58 1.02

2 2.17 1.04 4.63 2.94 4.97 2.70 2.21 1.04 2.18 1.05

3 2.46 1.11 5.95 2.38 5.34 2.63 2.45 1.18 2.47 1.06

4 6.42 1.08 9.99 2.33 13.7 2.25 6.35 1.30 6.29 1.39

5 7.75 1.04 I3.8 2.19 11.4 2.07 7.64 1.14 7.59 1.14

6 7.84 1.04 11.5 2.06 12.5 1.91 7.90 1.09 7.92 1.46

7 7.96 1.07 ll.1 1.94 11.2 1.95 8.00 1.17 7.95 1.17

8 8.16 1.09 10.6 1.72 9.96 1.60 7.94 1.14 7.93 1.28

9 8.01 1.06 9.99 1.57 9.10 1.30 8.00 1.12 7.70 1.28

iai6.04[1.0619.0212.1619.0912.1016.0111.13[5.9611.211

A comparison of the partitioners in terms of the percentage of cut edges

leads to similar conclusions (cf. Table 4.5). PMeTiS, Jostle-MS, and Jostle-MD are

comparable, but UAMeTiS and DAMeTiS are almost twice as bad. The number of

cut edges always increases after a repartitioning since the load imbalance factor has

to be reduced.

Our overall conclusions from the results presented in Tables 4.3-4.5 are as

follows. PMeTiS is the best partitioner for Sequence_l since it is very fast and gives

the highest quality. UAMeTiS and DAMeTiS are faster partitioners but suffer from

poor load balancing quality. Jostle-MS and Jostle-MD, on the other hand, produce

high quality subdomains but require a relatively long time to perform the partition-

ing. In general, we expect global methods to produce higher quality partitions than

diffusive schemes, since they have more flexibility in choosing subdomain boundaries.

The remapping times for all five partitioners are presented in Table 4.6.

Two remapping strategies are used, resulting in different remapping times at each

level. The first strategy uses the default processor mapping given by the respective

partitioners, while the second performs processor reassignment based on our heuristic



85

Table4.5. Percentageofcut edgesbeforeandaftermeshpartitioningfor P=64using
a varietyof partitionersfor Sequence_l

PMeTiS UAMeTiS DAMeTiS Jostle-MS Jostle-MD
L Bef Aft Bef Aft Bef Aft Bef I Aft Bef Aft

1 6.61 8.95 6.61 17.8 6.61 15.8 6.61 9.04 6.61 9.04

2 10.6 13.2 22.0 25.0 19.4 23.6 10.9 14.4 10.8 13.8

3 13.1 17.1 26.2 29.6 25.0 28.6 14.6 17.0 13.4 19.8

4 9.80 16.4 20.7 31.9 20.3 32.3 9.54 15.1 11.5 15.0

5 10.8 16.0 23.6 30.9 20.6 31.6 9.82 17.4 9.62 15.6

6 9.65 16.7 25.6 30.8 27.2 31=2 10.8 17.3 9.11 15.8

7 9.38 15.8 22.9 31.9 27.9 30.7 10.6 17.8 9.88 17.2

8 9.62 16.0 25.1 32.1 27.2 30.6 10.8 16.9 9.83 14.6

9 9.27 15.8 27.4 31.8 24.4 26.2 10.0 16.3 9.22 14.8

lal9.86115.1122.2129.1122.1127.8llO.4115.719.99]15.1]

solution of the similarity matrix. It is important to note here that our heuristic

strategy uses the Wrema p weights of the dual graph vertices to minimize the data

remapping cost while the partitioners use the Wcomp weights. Even though the Wrem_p

values are the correct ones to use, it is not possible for the current versions of

the various partitioners to use them. Several observations can be made from the

results. The default remapping times are the fastest for Jostle-MD. PMeTiS is

about 17% while UAMeTiS and DAMeTiS are about 25% slower. However, the

heuristic remapping times for PMeTiS, Jostle-MS, and Jostle-MD are comparable

while those for UAMeTiS and DAMeTiS are about 40% longer. Also note that our

heuristic remapper reduces the remapping time by more than 28% for PMeTiS and

by about 17% for the Jostle partitioners. However, the improvement is less than 6%

for UAMeTiS and about 11% for DAMeTiS.

It is interesting to note that for Sequence_l, a global partitioner like PMeTiS

results in a significantly lower remapping overhead than its diffusive counterparts.

This seems rather unexpected since the general purpose of diffusive schemes is to

minimize the remapping cost. We believe that this discrepancy is due to the high
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Table4.6. Remappingtimeon an SP2 for P=64 using the default and our heuristic

strategies for Sequence_l

I L PMeTiS UAMeTiS DAMeTiS Jostle-MS Jostle-MDDef Heu Def I Heu Def Heu Def [ Heu Def I Heu

1 1.17 1.06 1.25 1.14 1.23 1.12 1.16 1.05 1.16 1.06

2 2.37 1.98 2.34 2.16 2.37 2.02 2.32 1.96 2.32 1.95

3 6.38 4.85 5.73 5.46 5.63 5.24 5.14 4.88 5.07 4.84

4 7.52 6.18 10.9 10.3 13.6 12.4 7.16 6.11 7.24 6.52

5 11.9 7.40 13.4 12.7 12.5 11.2 11.6 7.60 8.28 7.40

6 11.5 7.66 11.8 11.6 13.0 11.9 9.45 7.49 9.16 7.73

7 10.4 8.37 12.7 11.2 11.4 10.6 10.4 7.75 10.6 7.74

8 11.0 7.87 11.1 10.5 10.2 9.83 8.49 7.61 10.1 7.91

9 11.6 7.66 9.83 9.58 9.10 8.88 9.32 7.80 9.24 8.45

1AI8.1915.8918.7718.2918.7918.1317.2315.8117.o215.961

growth rate and speed with which our test meshes are evolving. For this class of

problems, globally repartitioning the graph from scratch seems to be more efficient

then attempting to diffuse the rapidly moving adapted region.

4.2.2 SP2 vs. Origin2000

We next compare the relative performance of the SP2 and the Origin2000.

Since we had access to only 32 processors of the Origin2000, experiments on the

SP2 were also run using P = 32 for this case. We paired the number of partitioners

down to two: PMeTiS and DAMeTiS. PMeTiS was chosen because it was the best

partitioner overall. DAMeTiS was chosen over the Jostle partitioners since faster

repartitioning is more important than higher quality in an adaptive-grid scenario.

The partitioning and the remapping times using our heuristic remapping strategy

for Sequence_l are presented in Table 4.7. Consistent with the results in Table 4.3,

DAMeTiS is slightly faster than PMeTiS on both machines. Consistent with the

results in Table 4.1, run times on the Origin2000 are about half the corresponding

times on the SP2. The DAMeTiS remapping times are higher than PMeTiS, but not

as bad as in Table 4.6. Finally, the remapping times are about three times faster on
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tile Origin2000thanon the SP2aswasalsoshownearlierin Table4.2.

Table4.7. Partitioning and remappingtimeson the SP2and the Origin2000for
P=32usingPMeTiSandDAMeTiSfor Sequence_l

Partitioning

PMeTiS IL SP2 [ 02000

1 0.35 0.45

2 0.42 0.20

3 0.68 0.33

4 0.96 0.47

5 0.75 0.41

6 1.09 0.50

7 0.79 0.42

8 1.12 0.37

9 0.86 0.34

Heuristic Remapping

DAMeTiS PMeTiS I DAMeTiS

SP2l°2°°° SP2l°2°°°lsP21°2°°°
0.36 0.44 1.43 0.47 1.58 0.50

0.48 0.23 3.19 1.10 2.87 1.05

0.68 0.30 5.49 1.82 8.86 2.68

0.90 0.44 11.0 3.66 17.5 6.57

1.00 0.40 14.1 4.62 17.7 6.30

0.75 0.43 15.4 4.78 14.9 5.83

0.75 0.34 15.4 4.78 15.3 5.04

0.80 0.32 15.0 4.93 13.3 4.65

0.80 0.34 15.7 5.04 14.9 4.03

[A10.78 j 0.39 ]0.72[ 036 1107l 3.47 11191 407 I

The quality of load balancing for this experimental case is presented in

Table 4.8. Theoretically, these results should be identical on both machines. How-

ever, since PMeTiS and DAMeTiS use pseudo-random numbers in their codes, the

results were not uniform due to different seeds on the SP2 and the Origin2000. The

results shown in Table 4.8 are obtained on the Origin2000. PMeTiS is once again

better than DAMeTiS, both in terms of the load imbalance factor and the percent-

age of cut edges. These results are consistent with those shown in Tables 4.4 and

4.5; however, the values are smaller here. The load imbalance factors are lower be-

cause fewer processors are used. The percentages of cut edges are smaller since the

surface-to-volume ratio decreases with the number of partitions.

4.2.3 Coarse vs. fine initial mesh

Figure 4.7 presents the partitioning and remapping times using PMeTiS

for the two mesh granularities, Sequence_l and Sequence_2. Remapping results are

presented only for our heuristic remapping strategy. A couple of observations can be
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Table4.8. Loadimbalancefactorandpercentageof cut edgesbeforeandafter mesh
partitioningfor P=32usingPMeTiSandDAMeTiSfor Sequence_l

Loadimbalancefactor Percentageof cut edges
PMeTiS I DAMeTiS PMeTiS DAMeTiS

L Bef I Aft [ Bef I Aft Bef I Aft Bef I Aft

1 3.58 1.01 3.58 1.88 4.65 6.28 4.65 15.7

2 2.17 1.04 3.95 2.12 7.66 9.65 19.3 20.5

3 2.41 1.06 4.90 2.12 9.57 13.2 21.1 25.3

4 6.14 1.05 9.82 1.87 7.99 12.2 17.1 28.2

5 7.31 1.03 10.2 1.68 6.76 11.8 29.1 26.5

6 7.88 1.05 9.12 1.41 7.15 11.1 25.3 24.4

7 7.86 1.04 7.82 1.11 6.47 11.3 20.6 14.2

8 8.02 1.04 6.66 1.05 6.50 11.5 10.0 13.9

9 7.92 1.05 6.61 1.05 6.21 10.9 9.41 14.2

1A15.9211.o416.9611.5917.OOllO.9117.412o.31

made from the resulting graphs. First, when comparing the two sequences, results

show that the finer mesh increases both the partitioning and the remapping times

by almost an order of magnitude. This is expected since the initial fine mesh is eight

times the size of the initial coarse mesh. The larger graph is thus more expensive to

partition and requires more data movement during remapping. Second, increasing

the number of processors from 16 to 64 does not have a major effect on the par-

titioning times, but causes an almost three-fold reduction in the remapping times.

This indicates that our load balancing strategy will remain viable on a large number

of processors.

Figure 4.8 presents the quality of load balancing for Sequence_l and Se-

quence_2 using PMeTiS. Load balancing quality is again measured in terms of the

load imbalance factor and the percentage of cut edges. For all the cases, the parti-

tioner does an excellent job of reducing the imbalance factor to near unity. Using a

finer mesh has a negligible effect on the imbalance factor after load balancing, but

requires a substantially longer repartitioning time (cf. Fig. 4.7). The percentage of

cut edges always increases with the number of processors. This is expected since the
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surface-to-volumeratio increaseswith the numberof partitions. Also notice that

the percentage of cut edges generally grows with each level of adaption, and then

stabilizes when the mesh size stabilizes. This is because successive adaptions create

a complex distribution of computationally-heavy nodes in the dual graph, thereby

requiring partitions to have more complicated boundaries to achieve load balance.

This increases the surface-to-volume ratio of the partitions, resulting in a higher

percentage of cut edges. The finer mesh consistently has a smaller percentage of

cut edges because the partitioner has a wider choice of edges to find a better cut.

However, we believe that this savings in the number of cut edges does not warrant

the significantly higher overhead of the finer mesh. Note that a more precise flow

solution can be achieved using the fine mesh since it was adapted one level deeper

than the coarse grid. Nonetheless, we expect our overall conclusions to remain the

same, even if an additional adaption was performed on the coarse mesh.

4.2.4 Growing vs. stable mesh

Lastly, we compare the performance of PMeTiS and DAMeTiS for Se-

quence_3 on 32 processors of the SP2. The reason for this experiment was to in-

vestigate the effect of our load balancing strategy on a mesh that continuously grows

in size through the course of adaption. The partitioning and the remapping times

are presented in Table 4.9. A comparison with the results in Table 4.7 shows that the

partitioning times for both partitioners are almost unchanged. This is because both

Sequence_l and Sequence_3 use the same initial mesh; thus, the partitioners work

on dual graphs that are topologically identical. The remapping times, however,

are significantly higher for Sequence_3 because of a much larger adapted mesh. Even

though the adaption region is moving with a lower velocity here than for Sequence_l,

the mesh is growing very rapidly, gaining more than two orders of magnitude in only

nine adaption levels. Our heuristic remapper reduces the remapping time by more
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than 23%for PMeTiSand by almost17%for DAMeTiS.Onceagain, the global

repartitioningstrategyusingPMeTiSproducesa lowerremappingoverheadthan

the diffusivescheme.

Table4.9.PartitioningandremappingtimesonanSP2for P=32usingPMeTiSand
DAMeTiSfor Sequence_3

L

1

2

3

4

5

6

7

8

9

IAI

Partitioning

PMeTiS DAMeTiS

0.34 0.59

0.32 0.34

0.34 0.38

0.60 0.46

0.88 0.75

1.35 0.72

1.25 1.32

1.18 0.93

0.95 0.76

0.80 0.69

Remapping

PMeTiS I DAMeTiSDef I Heu Def I Heu

1.30 1.26 1.15 1.18

1.45 1.27 1.53 1.38

2.17 1.72 2.39 1.95

5.68 4.52 4.80 4.47

15.1 10.6 17.1 14.3

23.9 16.4 32.4 27.3

44.2 29.4 58.6 40.6

53.8 39.3 86.9 71.2

50.5 47.8 81.7 75.4

The quality of load balancing is presented in Table 4.10. PMeTiS is once

again significantly better than DAMeTiS in terms of the load imbalance factor.

Compared to the corresponding results in Table 4.8, the imbalance factor after mesh

repartitioning is higher, particularly for DAMeTiS. This is due to the lower speed

of the adapted region, which increases the maximum values of Wcomp and Wcomm in

the dual graph. This, in turn, limits the efficacy of the partitioner to balance the

mesh, since certain nodes have become very heavy. An additional side effect is that

the percentage of cut edges are significantly worse for Sequence_3 than for the higher

speed simulation of Sequence_l, shown in Table 4.8. Nonetheless, a near perfect load

balance is achieved by PMeTiS for this test case, even though it is partitioning the

dual of an initial mesh which has grown by over 120-fold in only nine adaptions.

This indicates that our dual graph scheme with adjustable vertex and edge weights

can be successfully used even when the mesh is growing significantly and rapidly.
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Table4.10.Loadimbalancefactorandpercentageof cut edgesbeforeandaftermesh
partitioning for P=32usingPMeTiSandDAMeTiSfor Sequence_3

Load imbalance factor Percentage of cut edges

PMeTiS I DAMeTiS PMeTiS I DAMeTiSL Bef I Aft Bef I Aft Bef I Aft Bef I Aft

1 1.89 1.03 1.89 1.13 4.70 4.73 4.70 6.75

2 4.46 1.03 4.31 1.39 4.75 6.85 8.82 15.5

3 3.26 1.04 3.78 2.37 11.6 20.8 29.5 25.8

4 2.17 1.08 3.99 2.75 28.6 34.4 36.6 33.3

5 2.31 1.03 4.33 3.08 34.2 47.7 33.6 42.2

6 3.80 1.08 5.69 2.59 40.4 49.6 41.7 44.8

7 3.59 1.15 3.72 2.97 41.3 48.9 39.4 44.4

8 4.06 1.13 8.26 2.42 37.6 44.4 42.4 42.6

9 4.45 1.15 5.26 2.09 37.2 45.5 36.8 44.4

A 3.33 1.08 4.58 2.31 26.7 33.7 30.4 33.3



CHAPTER5

SUMMARY AND FUTURE WORK

5.1 Summary

Simulation of large-scale transient flows around complex geometric bodies

is a common challenge in many fields of computational fluid dynamics. To address

these problems there is a demonstrable need for unstructured mesh adaptivity on

multiprocessor systems. Efficient implementations of these procedures is a complex

task primarily due to the load imbalance resulting from the dynamically changing

nonuniform grids. In this thesis we have developed PLUM, an automatic portable

framework for performing large-scale numerical computations in a message-passing

environment.

The most significant contribution of this thesis is the development and

validation of a load balancing methodology with a global view. In Chapter 1, we

presented a historical overview.of techniques used to balance adaptive unstructured

mesh computations. Most previous efforts have relied on locally diffusive schemes,

since it was generally considered too expensive to repartition the entire domain in

the inner loop of an adaptive flow calculation. We also assert that local iterative

techniques are not ideally suited for dynamically balancing unsteady flows. These ap-

plications are prone to dramatically shifting the load distribution between adaption

phases, causing small regions of the domain to suddenly incur high computational

costs. Local diffusion techniques are therefore required to perform many iterations

before global convergence, or accept an unbalanced load in exchange for faster per-

formance. Also, by limiting task movement to nearest neighbors, a finite element

may have to make several hops before arriving at its final destination. Finally, global
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schemeswill generallyproducesuperiorsubdomainquality, sincethey arenot re-

strictedto nearestneighborcommunications.In orderto developaneffectiveglobal

balancingscheme,weneededto mitigatethepotentiallyhighcostofpartitioningand

data remapping.Additionally,a successfulframeworkhasbe portableandremain

viableona largenumberof processors.Wehavedemonstratedthat PLUMachieves

thesecriteria on realistic-sizedmeshesfor bothsteadyandunsteadysimulations.

In Chapter2, wepresentedour distributedmemoryimplementationof the

tetrahedralmeshadaptionschemedevelopedby BiswasandStrawn[12].Theparallel

codeconsistsof approximately3,000linesofC++ with MPI whichwrapsaroundthe

originalversionwritten in C. Theserialcodewasleft almostcompletelyunchanged

exceptfor a fewlineswhich interfacewith the parallelwrapper. This allowedus

to designthe parallelversionusingthe serialcodeasa buildingblock. Theobject-

orientedapproachmaintainsto build a cleaninterfacebetweenthe two layersof

the programwhile maintainingefficiency.Only a slight increasein memorywas

necessaryto keeptrackof theglobalmappingsandsharedprocessorlists for objects

locatedon partition boundaries.

Six refinementandtwo coarseningcaseswerepresentedwith varyingfrac-

tions of a realistic-sizeddomainbeing targetedfor refinement.' We have shown

extremely promising parallel performance of more than 52.5X on 64 processors of

an SP2 when about 60% of the computational mesh used to simulate a helicopter

acoustics experiment was dynamically refined, using a solution-based error indica-

tor. Performance was significantly improved by repartitioning and remapping the

mesh in a load-balanced fashion after edges were targeted for refinement but before

performing the actual subdivision.

Chapter 3 presented PLUM, our dynamic load balancing framework. Sev-

eral salient features of this methodology were described: (i) a dual graph represen-

tation, (ii) parallel mesh repartitioning, (iii) optimal and heuristic remapping cost
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functions,(iv) efficientdata movementand refinementschemes,and (v) accurate

metricscomparingthe computationalgainand the redistributioncost. Large-scale

scientificcomputationson an SP2showedthat load balancingcansignificantlyre-

duceflowsolvertimesovernon-balancedloads.With multiplemeshadaptions,the

gainsrealizedwith loadbalancingmaybeevenmoredramatic.

Usingthe dualgraphrepresentationof the initial meshfor the purposeof

partitioningisoneof thekeyfeaturesofthis work. Newcomputationalgridsobtained

by adaptionaretranslatedto theweightsWcomp and Wrem_p for every vertex and to

the weight Wcomm for every edge in the dual mesh. As a result, the complexity of

the dual graph remains unchanged during the course of an adaptive computation.

Therefore, the repartitioning times depend only on the initial problem size and the

number of partitions - but not on the size of the adapted mesh.

We performed two different tests on PlUM using a reahstic-sized compu-

tational mesh on an SP2. The first strategy targeted varying fractions of the initial

tetrahedral mesh for refinement while the second strategy consisted of three suc-

cessive levels of adaption. Results indicated that by using a high quality parallel

partitioner to rebalance the mesh, a perfectly load balanced flow solver is guaran-

teed with minimal communication overhead.

An important contribution of this research is our development of the pro-

cessor reassignment phase. The goal is to find a mapping between partitions and

processors such that the data redistribution cost is minimized. In general, the num-

ber of new partitions is an integer multiple F of the number of processors. Each

processor is then assigned F unique partitions. The rationale behind allowing mul-

tiple partitions per processor is that performing data mapping at a finer granularity

reduces the volume of data movement at the expense of partitioning and processor

reassignment times. Various cost functions are usually needed to solve the processor

reassignment problem for different architectures. We present three general metrics:
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TotalV, NaxV,andNaxSRwhichmodelthe remappingcoston mostmultiprocessor

systems.Themetric TotalV assumesthat by reducingnetworkcontentionandthe

total numberof elementsmoved,theremappingtimewill be reduced.TheNaxVand

NaxSRmetrics,on the otherhand,considersdata redistributionin termsof solving

a loadimbalanceproblem,whereit is moreimportantto minimizethe workloadof

the mostheavily-weightedprocessorthan to minimizethe sum of all the loads. In

general, the overall objective function may need to use a combination of metrics to

effectively incorporate all related costs. Optimal solutions for all three metrics, as

well as a heuristic approach were implemented. It was shown that our heuristic al-

gorithm quickly finds high quality solutions for all our metrics. Additionally, strong

theoretical bounds on the heuristic time and solution quality were presented.

Once the reassignment problem is solved, a model is needed to quickly pre-

dict the expected redistribution cost on a given architecture, to ensure that it is more

than compensated for by the computational gain of balanced partitions. Accurately

estimating this time is very difficult due to the large number and complexity of the

costs involved in the remapping procedure. The computational overhead includes

rebuilding internal data structures and updating shared boundary information. The

communication overhead is architecture-dependent and can be difficult to predict, es-

pecially for the many-to-many collective communication pattern used by the remap-

per. We developed a new remapping cost model for the SP2, and quantitatively

validated its accuracy in predicting redistribution overhead. Results indicated that

reducing the bottleneck, rather than the aggregate, overhead guarantees a reduction

in the total redistribution time.

The remapping phase is responsible for physically moving data when it

is reassigned to a different processor, and is generally the most expensive phase

of any load balancing strategy. In this thesis, we made the key observation that

data remapping for a refinement step should be performed after the marking phase,
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but beforethe actual subdivision.Becausethe refinementpatternsaredetermined

duringthe markingphase,the weightsof the dualgraphcanbeadjustedasthough

subdivisionhasalreadytakenplace. Basedon the updateddual graph, the load

balancerproceedsin generatinga newpartitioning, computingthe new processor

assignments,and performingthe remappingon the originalunrefinedgrid. Sincea

smallervolumeof datais movedusingthis technique,a significantcostsavingscan

be actlieved.This efficientremappingstrategyresultedin almosta four-fold cost

savingsfor datamovementwhen60%of the computationalmeshwasrefined.

Severalexperimentswereperformedin Chapter4 to verify the effective-

nessof PLUM on sequences of dynamically adapted unstructured grids. Results

demonstrated that our framework works well for both steady and unsteady adaptive

problems with many levels of adaption, even when using a coarse initial mesh. We

showed that our dual graph scheme with adjustable vertex and edge weights can

be successfully used even when the mesh is growing significantly and rapidly. A

comparison of coarse and fine initial grids was presented to evaluate the relationship

between dual mesh granularity and load balancing performance. We found that a

finer starting mesh may be used to achieve lower edge cuts and marginally better load

balance, but is generally not worth the increased partitioning and data remapping

times.

Portability was examined by comparing results between the distributed-

memory system of the IBM SP2, and the Scalable Shared-memory MultiProcessing

(S2MP) architecture of the SGI/Cray Origin2000. The refinement procedure showed

promising parallel results and achieved an efficiency of more than 87% on 32 pro-

cessors of both the SP2 and the Origin2000, for our largest test case. Additionally,

the performance of all our load balancing modules were similar on both architec-

tures. These results demonstrated that PLUM can be effectively ported to different
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platformswithout the needfor anycodemodifications.Wealsoappliedthe SP2re-

distributioncostmodelto the Origin2000,but with limited success.Futureresearch

will addressthedevelopmentof a morecomprehensiveremappingcostmodelfor the

Origin2000.

Finally, we conducted a repartitioning analysis by examining the perfor-

mance of five, state-of-the-art parallel partitioners within PLUM. We found that a

global partitioner like PMeTiS significantly outperforms its diffusive counterparts,

for both remapping overhead and subdomain quality. In general, global methods are

expected to produce higher quality partitions than diffusive schemes, since they have

more flexibility in choosing subdomain boundaries. We believe that the discrepancy

in remapping overhead is due to the high growth rate and speed with which our

test meshes evolved. These results validate our earlier claim that for this class of un-

steady problems, globally repartitioning the graph from scratch is more efficient then

attempting to diffuse the rapidly moving adapted region. Additionally, we showed

that the data redistribution overhead can be reduced by applying our heuristic pro-

cessor reassignment algorithm to the default partition-to-processor mapping given

by all five partitioners.

5.2 Future Work

There are many extensions that can be made to the work presented here.

First, we plan to interface PI.U M with a parallel flow solver system. The combination

of these two components should allow us to compute solutions for systems which

were previously unsolvable. Additionally, new insight will be gained by observing the

sustained performance of P[.iJ M. We also plan to investigate the relationship between

subdomain quality and flow solver performance. Currently the total edge cut is used

as the standard metric for evaluating partition quality. We believe that a more

sophisticated model is needed in order to accurately predict flow solver overhead.
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Several extension can be made to the processor reassignment phase. In

Sec. 3.5 we developed a technique for assigning F _> 1 unique partitions to each pro-

cessor using the TotalV metric. A similar algorithm for the MaxV and MaxSR metrics

could be developed, since it is currently limited a to one-to-one mapping between

partitions and processors. An extensive analysis could determine the effectiveness of

setting F > 1. By having multiple partitions assigned to each processor we may re-

duce the remapping overhead, at the expense of higher partitioning times and disjoint

subdomains. We can also extend the similarity matrix construction and processor

reassignment phase to consider processor locality. Some architectures, such as the

hypercube or 3D-torus, can require multiple message hops between two communi-

cating processors. Additionally, hierarchical interconnection layers can affect the

relative cost of each hop. These additional parameters could be incorporated into

our framework for these architectures, in order to minimize and predict remapping

overhead.

Finally, we would like to compare our message-passing implementation of

PLUM with other programming paradigms, such as CC-NUMA and multithread-

ing. A drawback of our MPI load balancing system is the high computation and

communication overhead incurred during redistribution. A multithreading approach

may be used as a means of exploring concurrency in the processor level in order

to tolerate synchronization costs inherent in traditional nonthreaded systems. Pre-

liminary results indicate that multithreading can be used as a mechanism to mask

the overheads required for the dynamic balancing of processor workloads, with the

computations required for the actual numerical solution of PDEs [17]. Unfortu-

nately multithreading complicates program complexity and makes code reusability

a difficult task. Another drawback of the current PLUM implementation is the code

complexity resulting from explicit message passing. CC-NUMA offers the advantage
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of a global address space with automatic page migration. As a result, code develop-

ment time should be considerably lower than the MPI implementation. A potential

disadvantage of this approach, however, is the degradation of parallel performance as

the number of processors increases. A comparison of all three programming method-

ologies would provide an extremely valuable analysis.
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